Electro-Stimulated Dual-Species Catalysis Enables CO2 Fixation Toward Selective 1,4-Butanedioic Acid Biosynthesis.

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-10-15 DOI:10.1002/cssc.202501802
Triya Mukherjee, Venkata Mohan S
{"title":"Electro-Stimulated Dual-Species Catalysis Enables CO<sub>2</sub> Fixation Toward Selective 1,4-Butanedioic Acid Biosynthesis.","authors":"Triya Mukherjee, Venkata Mohan S","doi":"10.1002/cssc.202501802","DOIUrl":null,"url":null,"abstract":"<p><p>Succinic acid (SA)/1,4-Butanedioic acid is a key platform-chemical with broad industrial relevance, yet its biocatalytic production is constrained by redox imbalance, by-product accumulation, and limited CO<sub>2</sub> sequestration. This study overcomes the above limitations and enhanced the SA production (0.6 g g<sup>-1</sup>; 6 g L<sup>-1</sup>) by dual-species catalysis using Citrobacter amalonaticus (NCIM 5782, CA) and Bacillus subtilis (BS, NCIM 5781), in a bioelectrocatalytic system. Comprehensive gene-expression-profiling revealed upregulation of phosphoenolpyruvate carboxylase (ppc/PPC) in CA and pyruvate carboxylase (pyc/PYC) in BS, reflecting intensified carboxylation activity via the reductive tricarboxylic acid pathway. Protein/structural modeling/docking of PPC and PYC demonstrated enhanced catalytic-site exposure under electro-fermentative co-culture conditions, correlating with greater carboxylation efficacy. Notably, beyond extracellular-CO<sub>2</sub> fixation, intracellular-CO<sub>2</sub> sequestration is also evident, as indicated by a marked enrichment of H<sub>2</sub> in the biogas produced during dual-species-catalysis compared to monoculture systems. Thermodynamic and electrochemical evaluation indicated greater stability and electron flow in co-culture reactors (R9:ΔG = -42.29 kJ) compared to monocultures. Collectively, this study presents a scalable hybrid bioelectrochemical strategy leveraging species-specific metabolic roles and electron-steering to facilitate high-yield, selective SA production, offering a promising blueprint for sustainable carbon-based biomanufacturing.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501802"},"PeriodicalIF":6.6000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501802","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Succinic acid (SA)/1,4-Butanedioic acid is a key platform-chemical with broad industrial relevance, yet its biocatalytic production is constrained by redox imbalance, by-product accumulation, and limited CO2 sequestration. This study overcomes the above limitations and enhanced the SA production (0.6 g g-1; 6 g L-1) by dual-species catalysis using Citrobacter amalonaticus (NCIM 5782, CA) and Bacillus subtilis (BS, NCIM 5781), in a bioelectrocatalytic system. Comprehensive gene-expression-profiling revealed upregulation of phosphoenolpyruvate carboxylase (ppc/PPC) in CA and pyruvate carboxylase (pyc/PYC) in BS, reflecting intensified carboxylation activity via the reductive tricarboxylic acid pathway. Protein/structural modeling/docking of PPC and PYC demonstrated enhanced catalytic-site exposure under electro-fermentative co-culture conditions, correlating with greater carboxylation efficacy. Notably, beyond extracellular-CO2 fixation, intracellular-CO2 sequestration is also evident, as indicated by a marked enrichment of H2 in the biogas produced during dual-species-catalysis compared to monoculture systems. Thermodynamic and electrochemical evaluation indicated greater stability and electron flow in co-culture reactors (R9:ΔG = -42.29 kJ) compared to monocultures. Collectively, this study presents a scalable hybrid bioelectrochemical strategy leveraging species-specific metabolic roles and electron-steering to facilitate high-yield, selective SA production, offering a promising blueprint for sustainable carbon-based biomanufacturing.

电刺激双物种催化使CO2固定选择性1,4-丁二酸生物合成。
琥珀酸(SA)/1,4-丁二酸是一种具有广泛工业意义的关键平台化学品,但其生物催化生产受到氧化还原不平衡、副产物积累和有限的CO2封存的限制。本研究克服了上述局限性,在生物电催化体系中,利用柠檬酸杆菌(NCIM 5782, CA)和枯草芽孢杆菌(BS, NCIM 5781)双种催化,提高了SA的产量(0.6 g g-1; 6 g L-1)。综合基因表达谱显示,CA中磷酸烯醇丙酮酸羧化酶(ppc/ ppc)和BS中丙酮酸羧化酶(pyc/ pyc)上调,反映了通过还原性三羧酸途径增强的羧化活性。PPC和PYC的蛋白质/结构建模/对接表明,在电发酵共培养条件下,催化位点暴露增强,与更高的羧基化效率相关。值得注意的是,除了细胞外的二氧化碳固定外,细胞内的二氧化碳固存也很明显,与单一栽培系统相比,双物种催化过程中产生的沼气中H2的显著富集表明了这一点。热力学和电化学评价表明,与单一培养相比,共培养反应器(R9:ΔG = -42.29 kJ)具有更高的稳定性和电子流。总的来说,本研究提出了一种可扩展的混合生物电化学策略,利用物种特异性代谢作用和电子控制来促进高产、选择性SA的生产,为可持续的碳基生物制造提供了一个有希望的蓝图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信