{"title":"Assembly mechanism of PSII-LHCII array from higher plants.","authors":"Jianghao Wu, Cang Wu, Shuaijiabin Chen, Chao Huang, Quan Wen, Weijun Lin, Chao Wang, Dexian Han, Dandan Lu, Xiumei Xu, Jun Gao, Sen-Fang Sui, Lixin Zhang","doi":"10.1111/jipb.70045","DOIUrl":null,"url":null,"abstract":"<p><p>Photosystem II (PSII) comprises reaction centers and light-harvesting complexes of the major and minor antennas, forming diverse supercomplexes with varying antenna sizes and are organized as PSII arrays in grana thylakoids to respond to fluctuating light. However, the assembly mechanism of PSII arrays, excitation energy transfer and its regulation mechanisms in vascular plants remain poorly understood. Here, we report the cryo-electron microscopy structures of a 1.4-MDa PSII-LHCII (light-harvesting complex II) dimer and a 2.8-MDa tetramer, and present an initial model of hexamer from Arabidopsis. Structural and genetic analyses reveals that the tetramer is formed by two C<sub>2</sub>S<sub>2</sub>M<sub>2</sub> dimers arranged side by side through interactions between CP26/PsbZ and moderate (M)-LHCII within PSII arrays in the grana thylakoid. Furthermore, conformational changes of M-LHCII and CP24 facilitate the assembly transition from dimer to tetramer/hexamer. Chlorophyll rearrangement, supported by computational calculations and spectral analysis, suggests enhanced energy transfer efficiency in the tetramer compared to the dimer. Therefore, our findings provide new insights into the dynamic assembly and excitation energy redistribution within PSII arrays in higher plants.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.70045","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Photosystem II (PSII) comprises reaction centers and light-harvesting complexes of the major and minor antennas, forming diverse supercomplexes with varying antenna sizes and are organized as PSII arrays in grana thylakoids to respond to fluctuating light. However, the assembly mechanism of PSII arrays, excitation energy transfer and its regulation mechanisms in vascular plants remain poorly understood. Here, we report the cryo-electron microscopy structures of a 1.4-MDa PSII-LHCII (light-harvesting complex II) dimer and a 2.8-MDa tetramer, and present an initial model of hexamer from Arabidopsis. Structural and genetic analyses reveals that the tetramer is formed by two C2S2M2 dimers arranged side by side through interactions between CP26/PsbZ and moderate (M)-LHCII within PSII arrays in the grana thylakoid. Furthermore, conformational changes of M-LHCII and CP24 facilitate the assembly transition from dimer to tetramer/hexamer. Chlorophyll rearrangement, supported by computational calculations and spectral analysis, suggests enhanced energy transfer efficiency in the tetramer compared to the dimer. Therefore, our findings provide new insights into the dynamic assembly and excitation energy redistribution within PSII arrays in higher plants.
期刊介绍:
Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.