A view from above on JNp(Rn)

IF 1.6 2区 数学 Q1 MATHEMATICS
Shahaboddin Shaabani
{"title":"A view from above on JNp(Rn)","authors":"Shahaboddin Shaabani","doi":"10.1016/j.jfa.2025.111235","DOIUrl":null,"url":null,"abstract":"<div><div>For a symmetric convex body <span><math><mi>K</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span>, we define the space <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>K</mi><mo>)</mo></math></span> to be the tent generalization of <span><math><msub><mrow><mtext>JN</mtext></mrow><mrow><mi>p</mi></mrow></msub><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>, i.e., the space of all continuous functions <em>f</em> on the upper-half space <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup></math></span> such that<span><span><span><math><msub><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><msup><mrow><mi>S</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>K</mi><mo>)</mo></mrow></msub><mo>:</mo><mo>=</mo><msup><mrow><mo>(</mo><munder><mi>sup</mi><mrow><mi>C</mi></mrow></munder><mo>⁡</mo><munder><mo>∑</mo><mrow><mi>B</mi><mo>∈</mo><mi>C</mi></mrow></munder><mo>|</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>B</mi></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>p</mi></mrow></mfrac></mrow></msup><mo>&lt;</mo><mo>∞</mo><mo>,</mo></math></span></span></span> where, in the above, the supremum is taken over all finite disjoint collections of homothetic copies of <em>K</em>. It is then shown that the dual of <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>(</mo><mi>K</mi><mo>)</mo></math></span>, the closure of the space of continuous functions with compact support in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>K</mi><mo>)</mo></math></span>, consists of all Radon measures on <span><math><msubsup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msubsup></math></span> with uniformly bounded total variation on cones with base <em>K</em> and vertex in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. In addition, a similar scale of spaces is defined in the dyadic setting, and for <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span>, a complete characterization of their duals is given. We apply our results to study dyadic <span><math><msub><mrow><mtext>JN</mtext></mrow><mrow><mi>p</mi></mrow></msub></math></span> spaces.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"290 3","pages":"Article 111235"},"PeriodicalIF":1.6000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625004173","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a symmetric convex body KRn and 1p<, we define the space Sp(K) to be the tent generalization of JNp(Rn), i.e., the space of all continuous functions f on the upper-half space R+n+1 such thatfSp(K):=(supCBC|fB|p)1p<, where, in the above, the supremum is taken over all finite disjoint collections of homothetic copies of K. It is then shown that the dual of S01(K), the closure of the space of continuous functions with compact support in S1(K), consists of all Radon measures on R+n+1 with uniformly bounded total variation on cones with base K and vertex in Rn. In addition, a similar scale of spaces is defined in the dyadic setting, and for 1p<, a complete characterization of their duals is given. We apply our results to study dyadic JNp spaces.
俯瞰JNp(Rn)
对称凸体K⊂Rn和1≤术;∞,我们定义的空间Sp (K)的帐篷泛化JNp (Rn),也就是说,所有连续函数f的空间上半空间R + n + 1,为f为Sp (K): = (supC⁡∑B∈C | fB | p) 1术;∞,,在上面的,有限不相交集合的上确界是接管所有类似的副本的双K .然后表明S01 (K),关闭连续函数空间的紧凑支持S1 (K),由R+n+1上所有Radon测度组成,这些Radon测度在以K为底且顶点在Rn上的锥上具有一致有界的总变分。此外,在并矢设置下定义了一个相似的空间尺度,并在1≤p<;∞时,给出了它们对偶的完整表征。我们将所得结果应用于并矢JNp空间的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信