Optimising supercritical CO2 saturation and reservoir conditions for geological energy storage with transcritical carbon dioxide systems

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Dounya Behnous , Julio Carneiro , Andrés Carro , Paula Canteli , Ricardo Chacartegui , Jesus G. Crespo , Pavlos Tyrologou , Nikolaos Koukouzas
{"title":"Optimising supercritical CO2 saturation and reservoir conditions for geological energy storage with transcritical carbon dioxide systems","authors":"Dounya Behnous ,&nbsp;Julio Carneiro ,&nbsp;Andrés Carro ,&nbsp;Paula Canteli ,&nbsp;Ricardo Chacartegui ,&nbsp;Jesus G. Crespo ,&nbsp;Pavlos Tyrologou ,&nbsp;Nikolaos Koukouzas","doi":"10.1016/j.est.2025.118924","DOIUrl":null,"url":null,"abstract":"<div><div>The CO<sub>2</sub>-based Electrothermal Energy and Geological Storage (CEEGS) system integrates energy storage with CO<sub>2</sub> sequestration by storing excess renewable energy as supercritical CO<sub>2</sub>, which is back-produced for power generation. This study investigates reservoir (porosity, permeability, relative permeability, heterogeneity, anisotropy) and operational (injection rates, shut-in periods) parameters to maximise CO<sub>2</sub> saturation near the wellbore and minimise water co-production, critical for the energy storage capacity and operation of the surface transcritical CO<sub>2</sub> power cycles. Using CMG-STARS and CMOST-AI, we conducted a sensitivity analysis across injection rates (5–100 kg/s), porosity (0.05–0.25), permeability (10–1000 mD), and heterogeneity (C.V. 0.1–1.5). Results show that injection rates of 30–40 kg/s, porosity of 0.05–0.15, and low heterogeneity (C.V. &lt;0.25) achieve gas saturation up o 76 % with water production below 0.1 kg/s. Shut-in periods should not exceed 3 months to limit saturation losses. These findings provide a robust framework for optimising the CEEGS site selection and operation definition, ensuring supercritical CO<sub>2</sub> back production with adequate characteristics for efficient energy storage and operation.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"139 ","pages":"Article 118924"},"PeriodicalIF":8.9000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X25036370","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The CO2-based Electrothermal Energy and Geological Storage (CEEGS) system integrates energy storage with CO2 sequestration by storing excess renewable energy as supercritical CO2, which is back-produced for power generation. This study investigates reservoir (porosity, permeability, relative permeability, heterogeneity, anisotropy) and operational (injection rates, shut-in periods) parameters to maximise CO2 saturation near the wellbore and minimise water co-production, critical for the energy storage capacity and operation of the surface transcritical CO2 power cycles. Using CMG-STARS and CMOST-AI, we conducted a sensitivity analysis across injection rates (5–100 kg/s), porosity (0.05–0.25), permeability (10–1000 mD), and heterogeneity (C.V. 0.1–1.5). Results show that injection rates of 30–40 kg/s, porosity of 0.05–0.15, and low heterogeneity (C.V. <0.25) achieve gas saturation up o 76 % with water production below 0.1 kg/s. Shut-in periods should not exceed 3 months to limit saturation losses. These findings provide a robust framework for optimising the CEEGS site selection and operation definition, ensuring supercritical CO2 back production with adequate characteristics for efficient energy storage and operation.
跨临界二氧化碳系统地质储能的超临界CO2饱和度和储层条件优化
基于二氧化碳的电热和地质储存(CEEGS)系统通过将多余的可再生能源以超临界二氧化碳的形式储存起来,将能量储存与二氧化碳封存相结合,并将其用于发电。该研究研究了储层(孔隙度、渗透率、相对渗透率、非均质性、各向异性)和操作参数(注入速率、关井时间),以最大限度地提高井筒附近的二氧化碳饱和度,最大限度地减少水的共产,这对储能能力和地面跨临界二氧化碳动力循环的运行至关重要。利用CMG-STARS和cmax - ai,我们对注入速率(5-100 kg/s)、孔隙度(0.05-0.25)、渗透率(10-1000 mD)和非均质性(C.V. 0.1-1.5)进行了敏感性分析。结果表明,当注入速率为30-40 kg/s,孔隙度为0.05-0.15,非均质性低(cv <0.25)时,产水量低于0.1 kg/s,含气饱和度高达76%。关井时间不应超过3个月,以限制饱和损失。这些发现为优化CEEGS选址和运行定义提供了一个强大的框架,确保超临界二氧化碳的反产具有足够的特性,以实现高效的能源储存和运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信