The effect of elitist fitness-based selection on the escape from local optima

IF 6.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Stephen Chen
{"title":"The effect of elitist fitness-based selection on the escape from local optima","authors":"Stephen Chen","doi":"10.1016/j.asoc.2025.114066","DOIUrl":null,"url":null,"abstract":"<div><div>Random Search is the baseline that a metaheuristic must improve upon to be worth its added complexity. Random Search, in the form of Hill Climbing, cannot escape from local optima. A key claim of many metaheuristics is that they are able to escape from local optima. However, these claims are poorly tested and often based on imprecise definitions of what it means to escape from a local optimum in continuous domain search spaces. A practical and precise definition for an escape from a local optimum is developed. It is then shown how elitist fitness-based selection can lead to the rejection of exploratory search solutions, and this can cause many popular metaheuristics to degrade into (localized) Random Search in their attempts to escape from local optima. The explosion of new metaheuristics has often been just a repeated re-invention of localized Random Search for the key task of escaping from local optima.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"186 ","pages":"Article 114066"},"PeriodicalIF":6.6000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625013791","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Random Search is the baseline that a metaheuristic must improve upon to be worth its added complexity. Random Search, in the form of Hill Climbing, cannot escape from local optima. A key claim of many metaheuristics is that they are able to escape from local optima. However, these claims are poorly tested and often based on imprecise definitions of what it means to escape from a local optimum in continuous domain search spaces. A practical and precise definition for an escape from a local optimum is developed. It is then shown how elitist fitness-based selection can lead to the rejection of exploratory search solutions, and this can cause many popular metaheuristics to degrade into (localized) Random Search in their attempts to escape from local optima. The explosion of new metaheuristics has often been just a repeated re-invention of localized Random Search for the key task of escaping from local optima.
基于精英适应度的选择对局部最优逃脱的影响
随机搜索是元启发式必须改进的基线,以使其增加的复杂性物有所值。随机搜索,以爬坡的形式,无法摆脱局部最优。许多元启发式的一个关键主张是,它们能够摆脱局部最优。然而,这些说法没有经过充分的测试,而且往往基于对连续域搜索空间中逃避局部最优的含义的不精确定义。给出了逃避局部最优的一个实用而精确的定义。然后展示了基于精英适应度的选择如何导致探索性搜索解决方案被拒绝,这可能导致许多流行的元启发式算法在试图逃离局部最优时降级为(局部)随机搜索。新元启发式的爆发通常只是对局部随机搜索的重复重新发明,以逃避局部最优的关键任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信