{"title":"The effect of elitist fitness-based selection on the escape from local optima","authors":"Stephen Chen","doi":"10.1016/j.asoc.2025.114066","DOIUrl":null,"url":null,"abstract":"<div><div>Random Search is the baseline that a metaheuristic must improve upon to be worth its added complexity. Random Search, in the form of Hill Climbing, cannot escape from local optima. A key claim of many metaheuristics is that they are able to escape from local optima. However, these claims are poorly tested and often based on imprecise definitions of what it means to escape from a local optimum in continuous domain search spaces. A practical and precise definition for an escape from a local optimum is developed. It is then shown how elitist fitness-based selection can lead to the rejection of exploratory search solutions, and this can cause many popular metaheuristics to degrade into (localized) Random Search in their attempts to escape from local optima. The explosion of new metaheuristics has often been just a repeated re-invention of localized Random Search for the key task of escaping from local optima.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"186 ","pages":"Article 114066"},"PeriodicalIF":6.6000,"publicationDate":"2025-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625013791","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Random Search is the baseline that a metaheuristic must improve upon to be worth its added complexity. Random Search, in the form of Hill Climbing, cannot escape from local optima. A key claim of many metaheuristics is that they are able to escape from local optima. However, these claims are poorly tested and often based on imprecise definitions of what it means to escape from a local optimum in continuous domain search spaces. A practical and precise definition for an escape from a local optimum is developed. It is then shown how elitist fitness-based selection can lead to the rejection of exploratory search solutions, and this can cause many popular metaheuristics to degrade into (localized) Random Search in their attempts to escape from local optima. The explosion of new metaheuristics has often been just a repeated re-invention of localized Random Search for the key task of escaping from local optima.
期刊介绍:
Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities.
Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.