A hybrid pulse power characterization-elastic net framework for accurate state-of-health estimation in lithium-ion batteries under thermal aging conditions

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Zouhir Boumous , Samira Boumous , Mamoun Fellah , Ahlem Guesmi , Lotfi Khezami
{"title":"A hybrid pulse power characterization-elastic net framework for accurate state-of-health estimation in lithium-ion batteries under thermal aging conditions","authors":"Zouhir Boumous ,&nbsp;Samira Boumous ,&nbsp;Mamoun Fellah ,&nbsp;Ahlem Guesmi ,&nbsp;Lotfi Khezami","doi":"10.1016/j.est.2025.118911","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel hybrid framework for accurate State-of-Health (SoH) estimation of lithium-ion batteries, critical for enhancing safety, reliability, and lifespan in electric vehicles and energy storage systems. The approach integrates an enhanced Hybrid Pulse Power Characterization (HPPC) protocol with a thermal degradation model utilizing Elastic Net regression. By extracting key electrochemical features—ohmic resistance (R<sub>0</sub>) and polarization time constants (τ<sub>1</sub>, τ<sub>2</sub>)—across varying state-of-charge (SOC) levels and temperatures, the model minimizes cell stress while providing precise degradation indicators. Experimental validation on 18,650 LiFePO<sub>4</sub> cells over 400 cycles achieves an SoH prediction error of just 0.027 %. The framework demonstrates robustness in real-time applications, with minimal fitting errors and a strong correlation between the thermal indicator and SoH. This work introduces an effective, scalable approach for battery management systems, advancing predictive maintenance and condition monitoring.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"139 ","pages":"Article 118911"},"PeriodicalIF":8.9000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X25036242","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel hybrid framework for accurate State-of-Health (SoH) estimation of lithium-ion batteries, critical for enhancing safety, reliability, and lifespan in electric vehicles and energy storage systems. The approach integrates an enhanced Hybrid Pulse Power Characterization (HPPC) protocol with a thermal degradation model utilizing Elastic Net regression. By extracting key electrochemical features—ohmic resistance (R0) and polarization time constants (τ1, τ2)—across varying state-of-charge (SOC) levels and temperatures, the model minimizes cell stress while providing precise degradation indicators. Experimental validation on 18,650 LiFePO4 cells over 400 cycles achieves an SoH prediction error of just 0.027 %. The framework demonstrates robustness in real-time applications, with minimal fitting errors and a strong correlation between the thermal indicator and SoH. This work introduces an effective, scalable approach for battery management systems, advancing predictive maintenance and condition monitoring.

Abstract Image

一种用于热老化条件下锂离子电池健康状态准确估计的混合脉冲功率表征-弹性网络框架
本研究提出了一种新的混合框架,用于准确估计锂离子电池的健康状态(SoH),这对于提高电动汽车和储能系统的安全性、可靠性和寿命至关重要。该方法将增强的混合脉冲功率表征(HPPC)协议与利用弹性网络回归的热退化模型集成在一起。通过提取不同荷电状态(SOC)水平和温度下的关键电化学特征-欧姆电阻(R0)和极化时间常数(τ1, τ2),该模型在提供精确降解指标的同时将电池应力降至最低。在18650个LiFePO4电池上进行400次循环实验验证,SoH预测误差仅为0.027%。该框架在实时应用中具有鲁棒性,具有最小的拟合误差和热指标与SoH之间的强相关性。这项工作为电池管理系统引入了一种有效的、可扩展的方法,促进了预测性维护和状态监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信