Design of Cryogenic Electrolyte with Organic-Free Solvation Structure for Wide-Temperature Zinc Metal Batteries.

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhenyue Xing,Pei Ye,Xiaodong Shi,Lutong Shan,Shan Guo,Mingyang Chen,Yuxuan Xia,Yating Gao,Hamdy Khamees Thabet,Taghreed F Altamimi,Zeinhom M El-Bahy,Xinlong Tian,Jiang Zhou
{"title":"Design of Cryogenic Electrolyte with Organic-Free Solvation Structure for Wide-Temperature Zinc Metal Batteries.","authors":"Zhenyue Xing,Pei Ye,Xiaodong Shi,Lutong Shan,Shan Guo,Mingyang Chen,Yuxuan Xia,Yating Gao,Hamdy Khamees Thabet,Taghreed F Altamimi,Zeinhom M El-Bahy,Xinlong Tian,Jiang Zhou","doi":"10.1002/anie.202516974","DOIUrl":null,"url":null,"abstract":"Albeit the promising performance at ambient temperatures, the development of zinc metal batteries (ZMBs) is still haunted by the freezing-prone characteristic of aqueous electrolytes and the deteriorative interface reaction in extreme scenarios. Especially at low-temperature conditions, the abundant hydrogen bonds (H-bonds) between H2O molecules inevitably drive the aqueous solution transform into an orderly frozen state, resulting in sluggish reaction kinetics. Herein, a bio-inspired cryogenic electrolyte is proposed, and the strong interaction between proline additive and H2O solvent effectively disrupts the H-bond network, thereby depressing the freezing point while maintaining high ionic conductivity under extremely-low temperatures. Furthermore, the tailored weak and organic-free solvation structures facilitate rapid desolvation of Zn2+ ions, and the reduced H2O activity mitigates parasitic reactions on Zn anode surface, thus guaranteeing reversible zinc deposition and dendrite-free interface. Consequently, the anti-freezing electrolyte endows Zn||Zn cells with durable cyclic behavior over 2500 h. The PANI||Zn cell demonstrates excellent temperature adaptability from -30 to 60 °C, achieving a reversible capacity of 173.6 mAh g-1 at 60 °C and maintaining 93.6% capacity retention after 1300 cycles at -30 °C. This work reports a practical electrolyte design strategy for ZMBs in harsh environments, promoting the future application of low-temperature-resistant aqueous batteries.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"44 1","pages":"e202516974"},"PeriodicalIF":16.9000,"publicationDate":"2025-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202516974","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Albeit the promising performance at ambient temperatures, the development of zinc metal batteries (ZMBs) is still haunted by the freezing-prone characteristic of aqueous electrolytes and the deteriorative interface reaction in extreme scenarios. Especially at low-temperature conditions, the abundant hydrogen bonds (H-bonds) between H2O molecules inevitably drive the aqueous solution transform into an orderly frozen state, resulting in sluggish reaction kinetics. Herein, a bio-inspired cryogenic electrolyte is proposed, and the strong interaction between proline additive and H2O solvent effectively disrupts the H-bond network, thereby depressing the freezing point while maintaining high ionic conductivity under extremely-low temperatures. Furthermore, the tailored weak and organic-free solvation structures facilitate rapid desolvation of Zn2+ ions, and the reduced H2O activity mitigates parasitic reactions on Zn anode surface, thus guaranteeing reversible zinc deposition and dendrite-free interface. Consequently, the anti-freezing electrolyte endows Zn||Zn cells with durable cyclic behavior over 2500 h. The PANI||Zn cell demonstrates excellent temperature adaptability from -30 to 60 °C, achieving a reversible capacity of 173.6 mAh g-1 at 60 °C and maintaining 93.6% capacity retention after 1300 cycles at -30 °C. This work reports a practical electrolyte design strategy for ZMBs in harsh environments, promoting the future application of low-temperature-resistant aqueous batteries.
宽温锌金属电池用无有机溶剂化结构低温电解质的设计。
尽管锌金属电池在环境温度下具有良好的性能,但其发展仍然受到水溶液易结冰特性和极端情况下界面反应恶化的困扰。特别是在低温条件下,H2O分子之间丰富的氢键(H-bonds)不可避免地驱使水溶液转变为有序的冻结状态,导致反应动力学缓慢。本文提出了一种仿生低温电解质,脯氨酸添加剂和H2O溶剂之间的强相互作用有效地破坏了氢键网络,从而降低了冰点,同时在极低温下保持了高离子电导率。此外,定制的弱溶剂化和无有机溶剂化结构促进了Zn2+离子的快速脱溶,降低的H2O活性减轻了Zn阳极表面的寄生反应,从而保证了锌的可逆沉积和无枝晶界面。因此,防冻电解质赋予Zn||锌电池在2500小时内具有持久的循环行为。PANI||锌电池在-30至60°C范围内表现出出色的温度适应性,在60°C下达到173.6 mAh g-1的可逆容量,在-30°C下循环1300次后保持93.6%的容量保持率。本研究报告了一种适用于恶劣环境下zmb的实用电解质设计策略,促进了耐低温水性电池的未来应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信