{"title":"Active zone maturation controls presynaptic output and release mode and is regulated by neuronal activity.","authors":"Yulia Akbergenova,Jessica Matthias,Sofya Makeyeva,J Troy Littleton","doi":"10.1523/jneurosci.1143-25.2025","DOIUrl":null,"url":null,"abstract":"Synapse formation requires the accumulation of cytomatrix proteins and voltage-gated Ca2+ channels (VGCCs) at presynaptic active zones (AZs). At Drosophila melanogaster larval neuromuscular junctions, a sequential process of AZ maturation is observed, with initial incorporation of early scaffolds followed by arrival of late scaffolds and VGCCs. To examine how AZ maturation regulates presynaptic output, serial imaging of AZ formation and function was performed at time-stamped synapses of male larvae expressing glutamate receptors linked to the photoconvertible protein mMaple. Quantal imaging demonstrated older synapses have higher synaptic efficacy and sustain greater release across development, while immature sites lacking VGCC accumulation supported spontaneous fusion. To examine how activity regulates AZ maturation, the effects of cell autonomous disruptions to neurotransmitter release were analyzed. Decreased synaptic transmission reduced AZ seeding and caused hyperaccumulation of material at existing AZs. Generation of an endogenous photoconvertible version of the AZ scaffold protein BRP revealed neuronal silencing decreased the protein's turnover. Although enlarged AZs are also observed in rab3 mutants, activity reduction acted through an independent mechanism that required postsynaptic glutamate receptor-dependent signaling. Endogenous tagging of the Unc13B early AZ scaffold and the Unc13A late AZ scaffold revealed activity reduction decreased seeding of both early and late scaffolds, in contrast to rab3 mutants. Together, these data indicate AZ maturation regulates presynaptic release mode and output strength, with neuronal activity shaping both AZ number and size across development.Significance Statement How presynaptic development regulates neurotransmitter release output and the role of synaptic activity in active zone (AZ) maturation are unclear. Here, we perform birth dating and serial in vivo imaging of AZs over a multi-day period during Drosophila larval development. We find synaptic maturation regulates the strength of synaptic output and the timing of spontaneous versus evoked release. Synaptic activity modulates AZ material accumulation and seeding of new release sites, with disruptions to neurotransmitter release reducing AZ number and driving enhanced AZ material accumulation at fewer release sites.","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":"102 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/jneurosci.1143-25.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Synapse formation requires the accumulation of cytomatrix proteins and voltage-gated Ca2+ channels (VGCCs) at presynaptic active zones (AZs). At Drosophila melanogaster larval neuromuscular junctions, a sequential process of AZ maturation is observed, with initial incorporation of early scaffolds followed by arrival of late scaffolds and VGCCs. To examine how AZ maturation regulates presynaptic output, serial imaging of AZ formation and function was performed at time-stamped synapses of male larvae expressing glutamate receptors linked to the photoconvertible protein mMaple. Quantal imaging demonstrated older synapses have higher synaptic efficacy and sustain greater release across development, while immature sites lacking VGCC accumulation supported spontaneous fusion. To examine how activity regulates AZ maturation, the effects of cell autonomous disruptions to neurotransmitter release were analyzed. Decreased synaptic transmission reduced AZ seeding and caused hyperaccumulation of material at existing AZs. Generation of an endogenous photoconvertible version of the AZ scaffold protein BRP revealed neuronal silencing decreased the protein's turnover. Although enlarged AZs are also observed in rab3 mutants, activity reduction acted through an independent mechanism that required postsynaptic glutamate receptor-dependent signaling. Endogenous tagging of the Unc13B early AZ scaffold and the Unc13A late AZ scaffold revealed activity reduction decreased seeding of both early and late scaffolds, in contrast to rab3 mutants. Together, these data indicate AZ maturation regulates presynaptic release mode and output strength, with neuronal activity shaping both AZ number and size across development.Significance Statement How presynaptic development regulates neurotransmitter release output and the role of synaptic activity in active zone (AZ) maturation are unclear. Here, we perform birth dating and serial in vivo imaging of AZs over a multi-day period during Drosophila larval development. We find synaptic maturation regulates the strength of synaptic output and the timing of spontaneous versus evoked release. Synaptic activity modulates AZ material accumulation and seeding of new release sites, with disruptions to neurotransmitter release reducing AZ number and driving enhanced AZ material accumulation at fewer release sites.
期刊介绍:
JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles