Xueping Pan, Siqin Zhang, Lu Xia, Mengdi Sun, Xueqi Su, Yingying Ke, Tianyu Zhang, Liyun Su, Jiabian Lian, Shuqi Wu, Xiaomei Yan, Chaoxiang Chen
{"title":"Unravelling Ligand Conjugation Performance in Extracellular Vesicles: A Quantitative Assessment of Lipid, Protein, and Membrane Modifications.","authors":"Xueping Pan, Siqin Zhang, Lu Xia, Mengdi Sun, Xueqi Su, Yingying Ke, Tianyu Zhang, Liyun Su, Jiabian Lian, Shuqi Wu, Xiaomei Yan, Chaoxiang Chen","doi":"10.1002/jev2.70174","DOIUrl":null,"url":null,"abstract":"<p><p>Surface functionalization is an effective approach for enhancing the cancer-targeting efficiency of extracellular vesicles (EVs). However, the lack of direct comparisons between functionalization strategies has hindered the rational design of EV delivery systems. To address this gap, we developed a nano-flow cytometry-based methodology to quantitatively evaluate ligand conjugation and its relationship to targeting efficiency across three representative post‑production EV engineering strategies: lipid modification, protein modification, and membrane insertion. All three strategies achieved high conjugation efficiencies (>90%) with ligand densities ranging from several to tens of ligands per 100 nm<sup>2</sup> under optimized conditions. Beyond ligand density, functionalization strategies resulted in varying degrees of ligand clustering and reduced accessibility of endogenous cell-binding proteins on EVs, such as MFGE8, leading to differences in targeting performance. For milk-derived EVs, lipid modification achieved the highest ligand density, the most uniform conjugation, and minimal disruption to surface protein accessibility, yielding superior cancer-targeting efficiency. These findings highlight the importance of precise quantification of ligand conjugation performance and provide a robust methodology for optimizing surface functionalization to advance EV-based drug delivery.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"14 10","pages":"e70174"},"PeriodicalIF":14.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12519427/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jev2.70174","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Surface functionalization is an effective approach for enhancing the cancer-targeting efficiency of extracellular vesicles (EVs). However, the lack of direct comparisons between functionalization strategies has hindered the rational design of EV delivery systems. To address this gap, we developed a nano-flow cytometry-based methodology to quantitatively evaluate ligand conjugation and its relationship to targeting efficiency across three representative post‑production EV engineering strategies: lipid modification, protein modification, and membrane insertion. All three strategies achieved high conjugation efficiencies (>90%) with ligand densities ranging from several to tens of ligands per 100 nm2 under optimized conditions. Beyond ligand density, functionalization strategies resulted in varying degrees of ligand clustering and reduced accessibility of endogenous cell-binding proteins on EVs, such as MFGE8, leading to differences in targeting performance. For milk-derived EVs, lipid modification achieved the highest ligand density, the most uniform conjugation, and minimal disruption to surface protein accessibility, yielding superior cancer-targeting efficiency. These findings highlight the importance of precise quantification of ligand conjugation performance and provide a robust methodology for optimizing surface functionalization to advance EV-based drug delivery.
期刊介绍:
The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies.
The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.