Optimized Thermal Treatment of Lithium-Ion Battery Components as a Basis for Sustainable Pyrometallurgy.

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-10-14 DOI:10.1002/cssc.202501753
Anna Pražanová, Jan Kočí, Jonáš Uřičář, Dominik Pilnaj, Daniel-Ioan Stroe, Vaclav Knap
{"title":"Optimized Thermal Treatment of Lithium-Ion Battery Components as a Basis for Sustainable Pyrometallurgy.","authors":"Anna Pražanová, Jan Kočí, Jonáš Uřičář, Dominik Pilnaj, Daniel-Ioan Stroe, Vaclav Knap","doi":"10.1002/cssc.202501753","DOIUrl":null,"url":null,"abstract":"<p><p>The escalating global demand for lithium-ion batteries necessitates efficient and sustainable end-of-life management. Major recycling routes such as pyrometallurgy and hydrometallurgy offer promising paths for metal recovery, but their efficiency often depends on the pretreatment of spent batteries. However, optimizing low-temperature pretreatment for complete organic removal while preserving active material integrity remains challenging. This study investigated thermal decomposition and surface changes of key battery components-lithium nickel manganese cobalt oxide (NMC622) cathode, graphite anode, and polymeric separator-from 100 to 800 °C, focusing on the 400-650 °C industrial interval. Material responses were characterized using thermo-gravimetric analysis coupled with mass spectrometry, isothermal mass loss, and scanning electron microscopy with energy-dispersive X-ray spectroscopy. A 500 °C treatment was identified as optimal, enabling complete organic carbon removal within 1 h without compromising the NMC spinel structure or current collector degradation. This precise control reduces energy consumption and mitigates hazardous gas release, enhancing environmental sustainability and providing a practical, scalable, and cost-effective strategy for improving battery recycling. These findings help to define the parameters for efficient electroactive material separation. This work advances the understanding of low-temperature thermal pretreatment for battery recycling, supporting a circular economy for critical materials.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501753"},"PeriodicalIF":6.6000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501753","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The escalating global demand for lithium-ion batteries necessitates efficient and sustainable end-of-life management. Major recycling routes such as pyrometallurgy and hydrometallurgy offer promising paths for metal recovery, but their efficiency often depends on the pretreatment of spent batteries. However, optimizing low-temperature pretreatment for complete organic removal while preserving active material integrity remains challenging. This study investigated thermal decomposition and surface changes of key battery components-lithium nickel manganese cobalt oxide (NMC622) cathode, graphite anode, and polymeric separator-from 100 to 800 °C, focusing on the 400-650 °C industrial interval. Material responses were characterized using thermo-gravimetric analysis coupled with mass spectrometry, isothermal mass loss, and scanning electron microscopy with energy-dispersive X-ray spectroscopy. A 500 °C treatment was identified as optimal, enabling complete organic carbon removal within 1 h without compromising the NMC spinel structure or current collector degradation. This precise control reduces energy consumption and mitigates hazardous gas release, enhancing environmental sustainability and providing a practical, scalable, and cost-effective strategy for improving battery recycling. These findings help to define the parameters for efficient electroactive material separation. This work advances the understanding of low-temperature thermal pretreatment for battery recycling, supporting a circular economy for critical materials.

锂离子电池部件的优化热处理是可持续热冶金的基础。
随着全球对锂离子电池需求的不断增长,高效、可持续的报废管理势在必行。火法冶金和湿法冶金等主要回收途径为金属回收提供了有前途的途径,但其效率往往取决于废电池的预处理。然而,优化低温预处理以完全去除有机,同时保持活性物质的完整性仍然具有挑战性。本研究研究了锂镍锰钴氧化物(NMC622)阴极、石墨阳极和聚合物分离器等关键电池部件在100 ~ 800℃的热分解和表面变化,重点研究了400 ~ 650℃的工业区间。材料响应采用热重分析、质谱分析、等温质量损失、扫描电子显微镜和能量色散x射线能谱分析进行表征。500°C的处理被认为是最佳的,可以在1小时内完全去除有机碳,而不会影响NMC尖晶石结构或电流收集器的降解。这种精确的控制降低了能源消耗,减轻了有害气体的释放,增强了环境的可持续性,并为改善电池回收提供了实用、可扩展和具有成本效益的策略。这些发现有助于确定有效电活性材料分离的参数。这项工作促进了对电池回收低温热预处理的理解,支持关键材料的循环经济。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信