Optimizing the Performance of Sodium-Ion Battery through Suppressing ZnS Anode Alloy Reaction.

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-10-14 DOI:10.1002/cssc.202501774
Ruilin Zhu, Xin Tao, Zemin He, Lianghao Yu, Tiantian Wei, Haoliang Xie, Jingjing Xie, Pan Li, Kongqing Yu, Jun Li, Huile Jin, Shun Wang, Jichang Wang
{"title":"Optimizing the Performance of Sodium-Ion Battery through Suppressing ZnS Anode Alloy Reaction.","authors":"Ruilin Zhu, Xin Tao, Zemin He, Lianghao Yu, Tiantian Wei, Haoliang Xie, Jingjing Xie, Pan Li, Kongqing Yu, Jun Li, Huile Jin, Shun Wang, Jichang Wang","doi":"10.1002/cssc.202501774","DOIUrl":null,"url":null,"abstract":"<p><p>Zinc sulfide (ZnS) is a promising anode material for sodium-ion batteries (SIBs) due to its high theoretical capacity and cost-effectiveness. However, the alloying reaction of ZnS causes severe volume expansion, leading to material pulverization and capacity decay. To address this, a sandwich-structured ZnS/porous MXene (ZnS/PMX) composite is designed, where ZnS nanoparticles are anchored on PMX porous layers via ZnOTi interfacial bonding. The nanoporous structure of PMX creates vertical ion transport pathways, enabling faster sodium-ion diffusion and overcoming the limitations of conventional 2D MXene. Additionally, the confinement effect of PMX suppresses the alloying reaction of ZnS, enhancing its structural stability. As an SIB anode, ZnS/PMX maintains capacities of 414.8 mA h g<sup>-</sup> <sup>1</sup> after 2100 cycles at 5.0 A g<sup>-</sup> <sup>1</sup>, 322.9 mA h g<sup>-</sup> <sup>1</sup> after 3300 cycles at 10.0 A g<sup>-</sup> <sup>1</sup>, and 276.9 mA h g<sup>-</sup> <sup>1</sup> after 4100 cycles at 20.0 A g<sup>-</sup> <sup>1</sup>. This performance benefits from the confinement effects of PMX, which effectively suppresses the alloying reaction and enhances ZnS stability. The results shed new light on the design of metal sulfide/MXene hybrid materials for alkali metal batteries.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501774"},"PeriodicalIF":6.6000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501774","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Zinc sulfide (ZnS) is a promising anode material for sodium-ion batteries (SIBs) due to its high theoretical capacity and cost-effectiveness. However, the alloying reaction of ZnS causes severe volume expansion, leading to material pulverization and capacity decay. To address this, a sandwich-structured ZnS/porous MXene (ZnS/PMX) composite is designed, where ZnS nanoparticles are anchored on PMX porous layers via ZnOTi interfacial bonding. The nanoporous structure of PMX creates vertical ion transport pathways, enabling faster sodium-ion diffusion and overcoming the limitations of conventional 2D MXene. Additionally, the confinement effect of PMX suppresses the alloying reaction of ZnS, enhancing its structural stability. As an SIB anode, ZnS/PMX maintains capacities of 414.8 mA h g- 1 after 2100 cycles at 5.0 A g- 1, 322.9 mA h g- 1 after 3300 cycles at 10.0 A g- 1, and 276.9 mA h g- 1 after 4100 cycles at 20.0 A g- 1. This performance benefits from the confinement effects of PMX, which effectively suppresses the alloying reaction and enhances ZnS stability. The results shed new light on the design of metal sulfide/MXene hybrid materials for alkali metal batteries.

抑制ZnS阳极合金反应优化钠离子电池性能。
硫化锌(ZnS)具有较高的理论容量和成本效益,是一种很有前途的钠离子电池负极材料。然而,ZnS的合金化反应会引起严重的体积膨胀,导致材料粉化和容量衰减。为了解决这个问题,设计了一种三明治结构的ZnS/多孔MXene (ZnS/PMX)复合材料,其中ZnS纳米颗粒通过Zn - _ - O - _ - Ti界面键固定在PMX多孔层上。PMX的纳米孔结构创造了垂直离子传输途径,使钠离子扩散更快,克服了传统2D MXene的局限性。PMX的约束作用抑制了ZnS的合金化反应,提高了ZnS的结构稳定性。作为SIB阳极,ZnS/PMX在5.0 A g- 1下循环2100次后容量为414.8 mA h g- 1,在10.0 A g- 1下循环3300次后容量为322.9 mA h g- 1,在20.0 A g- 1下循环4100次后容量为276.9 mA h g- 1。这种性能得益于PMX的约束作用,它有效地抑制了合金反应,提高了ZnS的稳定性。研究结果为碱金属电池用金属硫化物/MXene杂化材料的设计提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信