Phytohormone Networks Orchestrating Lateral Organ Adaptations to Hypoxia and Reoxygenation in Fruit Crops.

IF 6.3 1区 生物学 Q1 PLANT SCIENCES
Muhammad Atiq Ashraf, Muhammad Ateeq, Kaijie Zhu, Muhammad Asim, Samim Mohibullah, Talha Riaz, Xue Huang, Huiqiao Pan, Guohuai Li, Sergey Shabala, Junwei Liu
{"title":"Phytohormone Networks Orchestrating Lateral Organ Adaptations to Hypoxia and Reoxygenation in Fruit Crops.","authors":"Muhammad Atiq Ashraf, Muhammad Ateeq, Kaijie Zhu, Muhammad Asim, Samim Mohibullah, Talha Riaz, Xue Huang, Huiqiao Pan, Guohuai Li, Sergey Shabala, Junwei Liu","doi":"10.1111/pce.70242","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing severity and frequency of climate extremes threaten global fruit production. Among these, waterlogging-induced hypoxia and subsequent reoxygenation represent devastating yet understudied challenges. Major rainfall events disrupt rhizosphere oxygen dynamics, triggering metabolic dysfunction and growth impairment in economically vital fruit crops. This review elucidates cutting-edge knowledge on how phytohormonal networks-centred on auxin, ethylene, gibberellin, abscisic acid, and jasmonic acid-mastermind the plasticity of lateral organs by modulating adaptive responses such as adventitious root initiation, aerenchyma development, shoot elongation, and metabolic reprogramming during hypoxia and reoxygenation cycles. While extensive research in model plants has unveiled intricate hormonal interplay by optimising root architecture and shoot growth in stress adaptation strategies, corresponding regulatory networks in fruit crops remain poorly understood. Although progress has been made in deciphering hypoxia responses, shedding light on species-specific hormonal reprogramming and molecular insights into hormonal crosstalk, the reoxygenation phase is often overlooked. We also emphasise recent advances in understanding the interplay between hormonal biosynthesis, signalling, and cross-regulatory mechanisms that determine plant survival and recovery under fluctuating oxygen conditions. By integrating genetic, metabolic, and hormonal research, this review aims to uncover strategies for enhancing fruit crop resilience to oxygen fluctuations, offering solutions to climate-driven challenges in horticulture.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.70242","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing severity and frequency of climate extremes threaten global fruit production. Among these, waterlogging-induced hypoxia and subsequent reoxygenation represent devastating yet understudied challenges. Major rainfall events disrupt rhizosphere oxygen dynamics, triggering metabolic dysfunction and growth impairment in economically vital fruit crops. This review elucidates cutting-edge knowledge on how phytohormonal networks-centred on auxin, ethylene, gibberellin, abscisic acid, and jasmonic acid-mastermind the plasticity of lateral organs by modulating adaptive responses such as adventitious root initiation, aerenchyma development, shoot elongation, and metabolic reprogramming during hypoxia and reoxygenation cycles. While extensive research in model plants has unveiled intricate hormonal interplay by optimising root architecture and shoot growth in stress adaptation strategies, corresponding regulatory networks in fruit crops remain poorly understood. Although progress has been made in deciphering hypoxia responses, shedding light on species-specific hormonal reprogramming and molecular insights into hormonal crosstalk, the reoxygenation phase is often overlooked. We also emphasise recent advances in understanding the interplay between hormonal biosynthesis, signalling, and cross-regulatory mechanisms that determine plant survival and recovery under fluctuating oxygen conditions. By integrating genetic, metabolic, and hormonal research, this review aims to uncover strategies for enhancing fruit crop resilience to oxygen fluctuations, offering solutions to climate-driven challenges in horticulture.

调节水果作物侧面器官对缺氧和再氧适应的植物激素网络。
日益严重和频繁的极端气候威胁着全球水果生产。其中,涝渍引起的缺氧和随后的再氧化是破坏性的,但尚未得到充分研究的挑战。重大降雨事件破坏根际氧动力学,引发经济上重要的水果作物代谢功能障碍和生长损害。本文综述了以生长素、乙烯、赤霉素、脱落酸和茉莉酸为中心的植物激素网络如何在缺氧和再氧循环中通过调节不定根起始、通气组织发育、茎伸长和代谢重编程等适应性反应来调控侧枝器官的可塑性。虽然对模式植物的广泛研究揭示了复杂的激素相互作用,通过优化根结构和芽生长来适应胁迫策略,但水果作物中相应的调节网络仍然知之甚少。虽然在破译缺氧反应、揭示物种特异性激素重编程和激素串扰的分子见解方面取得了进展,但再氧化阶段经常被忽视。我们还强调了在了解激素生物合成、信号传导和在波动氧条件下决定植物生存和恢复的交叉调节机制之间的相互作用方面的最新进展。通过整合遗传、代谢和激素研究,本综述旨在揭示增强水果作物对氧气波动的适应能力的策略,为园艺中气候驱动的挑战提供解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信