Iris Ruider, Kristian Thijssen, Daphné Raphaëlle Vannier, Valentina Paloschi, Alfredo Sciortino, Amin Doostmohammadi, Andreas R. Bausch
{"title":"Strings and topological defects govern ordering kinetics in endothelial cell layers","authors":"Iris Ruider, Kristian Thijssen, Daphné Raphaëlle Vannier, Valentina Paloschi, Alfredo Sciortino, Amin Doostmohammadi, Andreas R. Bausch","doi":"10.1038/s41567-025-03014-4","DOIUrl":null,"url":null,"abstract":"Many physiological processes, such as the shear flow alignment of endothelial cells in the vasculature, depend on the transition of cell layers between disordered and ordered phases. Here we demonstrate that such a transition is driven by the non-monotonic evolution of nematic topological defects in a layer of endothelial cells and the emergence of string excitations that bind the defects together. This suggests the existence of an intermediate phase of ordering kinetics in biological matter. We use time-resolved large-scale imaging and physical modelling to analyse the non-monotonic decrease in the number of defect pairs. The interaction of the intrinsic cell layer activity and the alignment field determines the occurrence of defect domains, which defines the nature of the transition. Defect pair annihilation is mediated by string excitations spanning multicellular scales within the cell layer. Our results, therefore, suggest a mechanism by which intermediate ordering and string excitation might contribute to regulating morphogenetic movements and tissue remodelling in vivo. Imposing shear flow on a cell layer induces an ordering transition. Now it is shown that an intermediate phase of ordering occurs driven by an interplay between cellular activity and the aligning field.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"21 10","pages":"1629-1637"},"PeriodicalIF":18.4000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41567-025-03014-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41567-025-03014-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Many physiological processes, such as the shear flow alignment of endothelial cells in the vasculature, depend on the transition of cell layers between disordered and ordered phases. Here we demonstrate that such a transition is driven by the non-monotonic evolution of nematic topological defects in a layer of endothelial cells and the emergence of string excitations that bind the defects together. This suggests the existence of an intermediate phase of ordering kinetics in biological matter. We use time-resolved large-scale imaging and physical modelling to analyse the non-monotonic decrease in the number of defect pairs. The interaction of the intrinsic cell layer activity and the alignment field determines the occurrence of defect domains, which defines the nature of the transition. Defect pair annihilation is mediated by string excitations spanning multicellular scales within the cell layer. Our results, therefore, suggest a mechanism by which intermediate ordering and string excitation might contribute to regulating morphogenetic movements and tissue remodelling in vivo. Imposing shear flow on a cell layer induces an ordering transition. Now it is shown that an intermediate phase of ordering occurs driven by an interplay between cellular activity and the aligning field.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.