Hybridizing ZnCo2O4-decorated MWCNTs: Electrode to symmetric solid-state supercapacitor configuration

IF 1.9 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Shrikant S. Raut, T. Kedara Shivasharma, Suraj R. Sankapal, Babasaheb R. Sankapal
{"title":"Hybridizing ZnCo2O4-decorated MWCNTs: Electrode to symmetric solid-state supercapacitor configuration","authors":"Shrikant S. Raut,&nbsp;T. Kedara Shivasharma,&nbsp;Suraj R. Sankapal,&nbsp;Babasaheb R. Sankapal","doi":"10.1002/cjce.25706","DOIUrl":null,"url":null,"abstract":"<p>Meticulously crafted architectures of hybrid materials through logical and rational design play an essential role in amplifying the performance of supercapacitors. Herein, high-density sequential growth controlled ZnCo<sub>2</sub>O<sub>4</sub> nanoparticles decorated on ‘dip and dry’ coated MWCNTs is proposed as a hybrid supercapacitive electrode to design a solid-state configured symmetric supercapacitor (SSS) device. Synthesized MWCNT/ZnCo<sub>2</sub>O<sub>4</sub> has been utilized as an electrode at a scan rate of 5 mV s<sup>−1</sup> and a specific capacitance of 1081 F g<sup>−1</sup> is attained with 72% capacitive retention after 10,000 CV cycles. Furthermore, the MWCNTs/ZnCo<sub>2</sub>O<sub>4</sub> device showcased a volumetric capacitance of 157 mF cm<sup>−3</sup>, a volumetric energy density of 21.80 mW h cm<sup>−3</sup>, and a balancing volumetric power density of 1509.79 mW cm<sup>−3</sup> at a current density of 0.92 mA cm<sup>−3</sup>.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":"103 11","pages":"5386-5397"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25706","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Meticulously crafted architectures of hybrid materials through logical and rational design play an essential role in amplifying the performance of supercapacitors. Herein, high-density sequential growth controlled ZnCo2O4 nanoparticles decorated on ‘dip and dry’ coated MWCNTs is proposed as a hybrid supercapacitive electrode to design a solid-state configured symmetric supercapacitor (SSS) device. Synthesized MWCNT/ZnCo2O4 has been utilized as an electrode at a scan rate of 5 mV s−1 and a specific capacitance of 1081 F g−1 is attained with 72% capacitive retention after 10,000 CV cycles. Furthermore, the MWCNTs/ZnCo2O4 device showcased a volumetric capacitance of 157 mF cm−3, a volumetric energy density of 21.80 mW h cm−3, and a balancing volumetric power density of 1509.79 mW cm−3 at a current density of 0.92 mA cm−3.

Abstract Image

杂化znco2o4修饰的MWCNTs:电极到对称固态超级电容器结构
通过逻辑和理性的设计精心制作的混合材料架构在放大超级电容器的性能方面发挥着至关重要的作用。本文提出了在“浸渍和干燥”涂层MWCNTs上修饰高密度顺序生长控制的ZnCo2O4纳米颗粒作为混合超级电容电极来设计固态配置对称超级电容器(SSS)器件。合成的MWCNT/ZnCo2O4作为电极,扫描速率为5 mV s−1,比电容为1081 F g−1,经过10,000 CV循环后电容保持率为72%。此外,MWCNTs/ZnCo2O4器件在0.92 mA cm−3电流密度下的体积电容为157 mF cm−3,体积能量密度为21.80 mW h cm−3,平衡体积功率密度为1509.79 mW cm−3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Canadian Journal of Chemical Engineering
Canadian Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
3.60
自引率
14.30%
发文量
448
审稿时长
3.2 months
期刊介绍: The Canadian Journal of Chemical Engineering (CJChE) publishes original research articles, new theoretical interpretation or experimental findings and critical reviews in the science or industrial practice of chemical and biochemical processes. Preference is given to papers having a clearly indicated scope and applicability in any of the following areas: Fluid mechanics, heat and mass transfer, multiphase flows, separations processes, thermodynamics, process systems engineering, reactors and reaction kinetics, catalysis, interfacial phenomena, electrochemical phenomena, bioengineering, minerals processing and natural products and environmental and energy engineering. Papers that merely describe or present a conventional or routine analysis of existing processes will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信