Experimental insights and neural network-driven modeling of dye adsorption dynamics using raw and carbonized Spirogyra maxima biomass

IF 2.5 4区 化学 Q2 Engineering
S. Karishma, V. C. Deivayanai, P. Thamarai, Y. P. Ragini, A. Saravanan, A. S. Vickram
{"title":"Experimental insights and neural network-driven modeling of dye adsorption dynamics using raw and carbonized Spirogyra maxima biomass","authors":"S. Karishma,&nbsp;V. C. Deivayanai,&nbsp;P. Thamarai,&nbsp;Y. P. Ragini,&nbsp;A. Saravanan,&nbsp;A. S. Vickram","doi":"10.1007/s11696-025-04300-4","DOIUrl":null,"url":null,"abstract":"<div><p>The current study investigates the sorptive potential of raw <i>Spirogyra maxima</i> biomass (RSB) and carbonized <i>Spirogyra maxima</i> biomass (CSB) for malachite green dye removal by integrating experimental studies with machine learning-driven optimization. Surface analysis revealed significant morphological changes with enhanced porosity and surface roughness following carbonization. X-Ray diffraction analysis showed a structural shift in CSB with amorphous content to 92.9%. Mechanistic modeling identified Sips isotherm and pseudo-first-order kinetics as best fit models with higher monolayer sorptive capacity of 140.2 mg/g for CSB than RSB which can only adsorb 78.67 mg/g of malachite green. Machine learning modeling demonstrated superior predictive artificial neural network (ANN) model performance configured with 80 neurons achieving <i>R</i><sup>2</sup> value of 0.9996. The best performance for the Random Forest (RF) model was observed at 175 trees, achieving an <i>R</i><sup>2</sup> of 0.9637, with mean squared error (MSE) of 18.85 and root mean square error (RMSE) of 4.34. The RF model’s out-of-bag (OOB) error stabilized beyond 150 trees, confirming the generalization capability and stability. The ANN model excelled in capturing the complex sorption nature with close relation to experimental results in the comparative analysis. The reusability studies confirmed the superiority of CSB for five reusability cycles retaining more than 70% of adsorptive activity. The research highlights the significance of integrating machine learning models such as Artificial Neural Network and Random Forest models with experimental adsorption studies for achieving efficient dye treatment.\n</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":513,"journal":{"name":"Chemical Papers","volume":"79 11","pages":"7987 - 8007"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Papers","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11696-025-04300-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The current study investigates the sorptive potential of raw Spirogyra maxima biomass (RSB) and carbonized Spirogyra maxima biomass (CSB) for malachite green dye removal by integrating experimental studies with machine learning-driven optimization. Surface analysis revealed significant morphological changes with enhanced porosity and surface roughness following carbonization. X-Ray diffraction analysis showed a structural shift in CSB with amorphous content to 92.9%. Mechanistic modeling identified Sips isotherm and pseudo-first-order kinetics as best fit models with higher monolayer sorptive capacity of 140.2 mg/g for CSB than RSB which can only adsorb 78.67 mg/g of malachite green. Machine learning modeling demonstrated superior predictive artificial neural network (ANN) model performance configured with 80 neurons achieving R2 value of 0.9996. The best performance for the Random Forest (RF) model was observed at 175 trees, achieving an R2 of 0.9637, with mean squared error (MSE) of 18.85 and root mean square error (RMSE) of 4.34. The RF model’s out-of-bag (OOB) error stabilized beyond 150 trees, confirming the generalization capability and stability. The ANN model excelled in capturing the complex sorption nature with close relation to experimental results in the comparative analysis. The reusability studies confirmed the superiority of CSB for five reusability cycles retaining more than 70% of adsorptive activity. The research highlights the significance of integrating machine learning models such as Artificial Neural Network and Random Forest models with experimental adsorption studies for achieving efficient dye treatment.

Graphical Abstract

Abstract Image

实验见解和神经网络驱动的染料吸附动力学建模使用原料和碳化的最大螺旋草生物量
本研究采用实验研究与机器学习驱动优化相结合的方法,研究了粗螺旋体(RSB)和碳化螺旋体(CSB)对孔雀石绿染料的吸附潜力。表面分析表明碳化后形貌发生了显著变化,孔隙率和表面粗糙度都有所提高。x射线衍射分析表明,非晶含量为92.9%的CSB发生了结构位移。机理模拟结果表明,Sips等温线和拟一级动力学模型对CSB的单层吸附量为140.2 mg/g,而RSB对孔雀石绿的吸附量仅为78.67 mg/g。机器学习建模表明,配置80个神经元的预测人工神经网络(ANN)模型性能优越,R2值为0.9996。随机森林(Random Forest, RF)模型在175棵树下表现最佳,R2为0.9637,均方误差(MSE)为18.85,均方根误差(RMSE)为4.34。该模型的out-of-bag (OOB)误差稳定在150棵树以上,证实了模型的泛化能力和稳定性。在对比分析中,人工神经网络模型较好地捕捉了与实验结果密切相关的复杂吸附性质。可重复使用性研究证实了CSB在5个重复使用周期内的优势,其吸附活性保持在70%以上。该研究强调了将机器学习模型(如人工神经网络和随机森林模型)与实验吸附研究相结合对于实现高效染料处理的重要性。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Papers
Chemical Papers Chemical Engineering-General Chemical Engineering
CiteScore
3.30
自引率
4.50%
发文量
590
期刊介绍: Chemical Papers is a peer-reviewed, international journal devoted to basic and applied chemical research. It has a broad scope covering the chemical sciences, but favors interdisciplinary research and studies that bring chemistry together with other disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信