Enhanced Radiosensitization of Cancer Cell Lines Using Nanoparticles: Mechanisms, Experimental Approaches and Clinical Translation—A Review

IF 1 Q4 CHEMISTRY, INORGANIC & NUCLEAR
B. A. Almayahi
{"title":"Enhanced Radiosensitization of Cancer Cell Lines Using Nanoparticles: Mechanisms, Experimental Approaches and Clinical Translation—A Review","authors":"B. A. Almayahi","doi":"10.1134/S1066362225040034","DOIUrl":null,"url":null,"abstract":"<p>This review summarizes data from experimental, mechanistic, and translational literature on the radiosensitizing effects of engineered nanoparticles (NPs)—principally gold (AuNPs), silver (AgNPs) and magnetic core–shell hybrid Fe<sub>3</sub>O<sub>4</sub>@Au constructs—in in vitro cancer models. We summarize common nanoparticle physicochemical characterizations, typical in vitro protocols (cell lines, dosimetry, and endpoints), and major biological readouts (viability, clonogenic survival, γH2AX foci, ROS). Across studies, high<i>Z</i> NPs (Au, Ag) and hybrid formulations frequently increase radiationinduced DNA damage and oxidative stress and reduce clonogenic survival, although the efficacy varies with the particle size, surface chemistry, concentration, cellular uptake, beam energy, and cell type. We synthesize mechanistic evidence supporting three principal mechanisms of nanoparticle radiosensitization—physical dose amplification, chemical ROS amplification, and biological modulation of DNA repair and cell death pathways—and discuss limitations that have delayed clinical translation (toxicity, dosimetry, biodistribution, reproducibility). Finally, we provide a prioritized set of recommendations to accelerate translation to in vivo validation and clinical testing.</p>","PeriodicalId":747,"journal":{"name":"Radiochemistry","volume":"67 4","pages":"432 - 440"},"PeriodicalIF":1.0000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiochemistry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1066362225040034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

This review summarizes data from experimental, mechanistic, and translational literature on the radiosensitizing effects of engineered nanoparticles (NPs)—principally gold (AuNPs), silver (AgNPs) and magnetic core–shell hybrid Fe3O4@Au constructs—in in vitro cancer models. We summarize common nanoparticle physicochemical characterizations, typical in vitro protocols (cell lines, dosimetry, and endpoints), and major biological readouts (viability, clonogenic survival, γH2AX foci, ROS). Across studies, highZ NPs (Au, Ag) and hybrid formulations frequently increase radiationinduced DNA damage and oxidative stress and reduce clonogenic survival, although the efficacy varies with the particle size, surface chemistry, concentration, cellular uptake, beam energy, and cell type. We synthesize mechanistic evidence supporting three principal mechanisms of nanoparticle radiosensitization—physical dose amplification, chemical ROS amplification, and biological modulation of DNA repair and cell death pathways—and discuss limitations that have delayed clinical translation (toxicity, dosimetry, biodistribution, reproducibility). Finally, we provide a prioritized set of recommendations to accelerate translation to in vivo validation and clinical testing.

Abstract Image

纳米颗粒增强肿瘤细胞系的放射致敏:机制、实验方法和临床转化综述
本文综述了工程纳米颗粒(NPs)——主要是金(AuNPs)、银(AgNPs)和磁性核壳混合Fe3O4@Au结构——在体外癌症模型中的放射增敏效应的实验、机制和翻译文献的数据。我们总结了常见的纳米颗粒物理化学特性,典型的体外实验方案(细胞系,剂量学和终点),以及主要的生物学读数(生存能力,克隆生存,γH2AX焦点,ROS)。在所有研究中,高z NPs (Au, Ag)和混合配方经常增加辐射诱导的DNA损伤和氧化应激,并降低克隆存活,尽管其效果随颗粒大小、表面化学、浓度、细胞摄取、光束能量和细胞类型而变化。我们综合了支持纳米粒子放射致敏的三种主要机制的机械证据——物理剂量放大、化学ROS放大和DNA修复和细胞死亡途径的生物调节——并讨论了延迟临床转化的局限性(毒性、剂量学、生物分布、可重复性)。最后,我们提供了一组优先建议,以加速转化为体内验证和临床试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiochemistry
Radiochemistry CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
1.30
自引率
33.30%
发文量
51
期刊介绍: Radiochemistry  is a journal that covers the theoretical and applied aspects of radiochemistry, including basic nuclear physical properties of radionuclides; chemistry of radioactive elements and their compounds; the occurrence and behavior of natural and artificial radionuclides in the environment; nuclear fuel cycle; radiochemical analysis methods and devices; production and isolation of radionuclides, synthesis of labeled compounds, new applications of radioactive tracers; radiochemical aspects of nuclear medicine; radiation chemistry and after-effects of nuclear transformations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信