Jiri Jancalek, Michal Kurka, Jhonatan Rodriguez-Pereira, Stanislav Slang and Milos Krbal
{"title":"Nanostructured MnS-based thin films deposited from propylamine solutions of elemental sulfur and manganese","authors":"Jiri Jancalek, Michal Kurka, Jhonatan Rodriguez-Pereira, Stanislav Slang and Milos Krbal","doi":"10.1039/D5MA00519A","DOIUrl":null,"url":null,"abstract":"<p >The exploration of novel methods for depositing MnS thin films is crucial due to their huge potential for optoelectronic, energy storage, and other advanced technological applications. This study proposes a novel solution-processing approach for the Mn–S-based nanostructured thin film fabrication using dissolved elemental Mn and S in propylamine-based solvents. The Mn/S ratio in the solution dictates the resulting film morphology, chemical composition, and molecular structure. Utilizing a 1/1 Mn/S ratio in propylamine and propylamine–methanol mixture solutions yielded nanoporous network structures formed mainly from Mn<small><sup>2+</sup></small> sulfides and hydroxides. Conversely, using 1/5 Mn/S ratio solutions under the same solvent conditions resulted in ∼85 nm spherical nanoparticle films made from Mn<small><sup>2+</sup></small>/Mn<small><sup>4+</sup></small> sulfides and hydroxides, polysulfides, and organic residues. Utilizing a propylamine–acetonitrile mixture, regardless of the Mn/S ratio, led to films formed from spherical/oval nanoparticles (∼126–136 nm). All nanoparticle-based films annealed at 300 °C exhibited photocatalytic activity, as evidenced by the methylene blue degradation under UV light illumination. Sulfur-rich films demonstrated the highest photocatalytic efficiency, indicating a promising route for tailored Mn–S photocatalysts.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 20","pages":" 7599-7608"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d5ma00519a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d5ma00519a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The exploration of novel methods for depositing MnS thin films is crucial due to their huge potential for optoelectronic, energy storage, and other advanced technological applications. This study proposes a novel solution-processing approach for the Mn–S-based nanostructured thin film fabrication using dissolved elemental Mn and S in propylamine-based solvents. The Mn/S ratio in the solution dictates the resulting film morphology, chemical composition, and molecular structure. Utilizing a 1/1 Mn/S ratio in propylamine and propylamine–methanol mixture solutions yielded nanoporous network structures formed mainly from Mn2+ sulfides and hydroxides. Conversely, using 1/5 Mn/S ratio solutions under the same solvent conditions resulted in ∼85 nm spherical nanoparticle films made from Mn2+/Mn4+ sulfides and hydroxides, polysulfides, and organic residues. Utilizing a propylamine–acetonitrile mixture, regardless of the Mn/S ratio, led to films formed from spherical/oval nanoparticles (∼126–136 nm). All nanoparticle-based films annealed at 300 °C exhibited photocatalytic activity, as evidenced by the methylene blue degradation under UV light illumination. Sulfur-rich films demonstrated the highest photocatalytic efficiency, indicating a promising route for tailored Mn–S photocatalysts.