Mn-doping reveals a thermal gap and natural p-type conductivity in Bi2O2Se

IF 4.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Antonín Sojka, Jan Zich, Tomáš Plecháček, Petr Levinský, Jiři Navrátil, Pavlína Ruleová, Stanislav Šlang, Ludvík Beneš, Karel Knížek, Václav Holý and Čestmír Drašar
{"title":"Mn-doping reveals a thermal gap and natural p-type conductivity in Bi2O2Se","authors":"Antonín Sojka, Jan Zich, Tomáš Plecháček, Petr Levinský, Jiři Navrátil, Pavlína Ruleová, Stanislav Šlang, Ludvík Beneš, Karel Knížek, Václav Holý and Čestmír Drašar","doi":"10.1039/D5MA00543D","DOIUrl":null,"url":null,"abstract":"<p >Bi<small><sub>2</sub></small>O<small><sub>2</sub></small>Se is a semiconductor that is being intensively studied due to its many extraordinary properties. Since about 2010, research on polycrystals has focused on thermoelectric materials. For the last 10 years, single crystal research has been driven by its quasi 2D structure with unexpectedly high permittivity (<em>ε</em><small><sub>r</sub></small> ≈ 500), which promotes high electron mobility. Bi<small><sub>2</sub></small>O<small><sub>2</sub></small>Se thus outperforms other 2D materials in many parameters. However, the high permittivity is also responsible for the extremely low critical concentration of the metal–insulator transition (<em>n</em> ≈ 10<small><sup>15</sup></small> cm<small><sup>−3</sup></small>). Thus, Bi<small><sub>2</sub></small>O<small><sub>2</sub></small>Se is so far only available as an n-type semiconductor largely with metal-like properties, although the electron concentration can range over 6 orders of magnitude (<em>n</em> ≈ 10<small><sup>15</sup></small>–10<small><sup>21</sup></small> cm<small><sup>−3</sup></small>), reportedly due to the very high concentration of selenium vacancies or selenium antisites on the Bi site. In this paper, we consider Mn doping in Bi<small><sub>2</sub></small>O<small><sub>2</sub></small>Se, Bi<small><sub>2−<em>x</em></sub></small>Mn<small><sub><em>x</em></sub></small>O<small><sub>2</sub></small>Se. The Mn doping leads to a decrease in the electron concentration and, for the first time, to a transition of the material to p-type conductivity. A thermal gap (≈ 0.9 eV) can be deduced from the temperature dependence of the electrical conductivity. The p-type transition is related to the interaction of Mn with the defect structure of Bi<small><sub>2</sub></small>O<small><sub>2</sub></small>Se. Our experiments suggest that the most abundant defects, besides the Se vacancies V<small><sub>Se</sub></small>, are the substitutional defect Se atom at the Bi site, Se<small><sub>Bi</sub></small> and the O atom at the Se site. From high resolution XRD analysis, we conclude that Mn reduces its concentration and brings the structure to the p-type state. From DFT calculations and magnetic data we infer the substitution of Bi by Mn (Mn<small><sub>Bi</sub></small>, in a high spin state, <em>μ</em> ≅ 5<em>μ</em><small><sub>B</sub></small>), although all experiments indicate a very low solubility <em>n</em><small><sub>Mn</sub></small> = 2.67 × 10<small><sup>18</sup></small> cm<small><sup>−3</sup></small> based on magnetic data.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 20","pages":" 7526-7534"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d5ma00543d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d5ma00543d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bi2O2Se is a semiconductor that is being intensively studied due to its many extraordinary properties. Since about 2010, research on polycrystals has focused on thermoelectric materials. For the last 10 years, single crystal research has been driven by its quasi 2D structure with unexpectedly high permittivity (εr ≈ 500), which promotes high electron mobility. Bi2O2Se thus outperforms other 2D materials in many parameters. However, the high permittivity is also responsible for the extremely low critical concentration of the metal–insulator transition (n ≈ 1015 cm−3). Thus, Bi2O2Se is so far only available as an n-type semiconductor largely with metal-like properties, although the electron concentration can range over 6 orders of magnitude (n ≈ 1015–1021 cm−3), reportedly due to the very high concentration of selenium vacancies or selenium antisites on the Bi site. In this paper, we consider Mn doping in Bi2O2Se, Bi2−xMnxO2Se. The Mn doping leads to a decrease in the electron concentration and, for the first time, to a transition of the material to p-type conductivity. A thermal gap (≈ 0.9 eV) can be deduced from the temperature dependence of the electrical conductivity. The p-type transition is related to the interaction of Mn with the defect structure of Bi2O2Se. Our experiments suggest that the most abundant defects, besides the Se vacancies VSe, are the substitutional defect Se atom at the Bi site, SeBi and the O atom at the Se site. From high resolution XRD analysis, we conclude that Mn reduces its concentration and brings the structure to the p-type state. From DFT calculations and magnetic data we infer the substitution of Bi by Mn (MnBi, in a high spin state, μ ≅ 5μB), although all experiments indicate a very low solubility nMn = 2.67 × 1018 cm−3 based on magnetic data.

Abstract Image

mn掺杂在Bi2O2Se中显示出热间隙和天然p型电导率
Bi2O2Se是一种半导体,由于其许多非凡的特性而受到广泛的研究。大约从2010年开始,多晶的研究主要集中在热电材料上。近10年来,单晶的研究一直被其高介电常数(εr≈500)的准二维结构所推动,这种结构促进了高电子迁移率。因此,Bi2O2Se在许多参数上优于其他二维材料。然而,高介电常数也导致金属-绝缘体过渡的临界浓度极低(n≈1015 cm−3)。因此,迄今为止,Bi2O2Se只能作为一种n型半导体,主要具有类似金属的性质,尽管电子浓度可以超过6个数量级(n≈1015-1021 cm−3),据报道,这是由于Bi位上的硒空位或硒反位的浓度非常高。在本文中,我们考虑在Bi2O2Se, Bi2−xMnxO2Se中掺杂Mn。Mn掺杂导致电子浓度降低,并首次使材料向p型电导率转变。从电导率的温度依赖性可以推导出热隙(≈0.9 eV)。p型转变与Mn与Bi2O2Se缺陷结构的相互作用有关。我们的实验表明,除了Se空位外,最丰富的缺陷是Bi位上的Se原子、SeBi和Se位上的O原子的取代缺陷。通过高分辨率的XRD分析,我们得出Mn降低了其浓度,使结构变为p型态的结论。根据DFT计算和磁性数据,我们推断出Bi被Mn取代(MnBi,在高自旋态,μ × 5μB),尽管所有实验都表明基于磁性数据的nMn = 2.67 × 1018 cm−3的溶解度很低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信