Atomistic simulations of irradiation damage on the engineering timescale: examining the dose rate effect in tungsten

IF 4.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Max Boleininger, Daniel R. Mason, Thomas Schwarz-Selinger and Pui-Wai Ma
{"title":"Atomistic simulations of irradiation damage on the engineering timescale: examining the dose rate effect in tungsten","authors":"Max Boleininger, Daniel R. Mason, Thomas Schwarz-Selinger and Pui-Wai Ma","doi":"10.1039/D5MA00677E","DOIUrl":null,"url":null,"abstract":"<p >The change in materials properties subjected to irradiation by highly energetic particles strongly depends on the irradiation dose rate. Atomistic simulations can in principle be used to predict microstructural evolution where experimental data is sparse or unavailable, however, fundamental limitations of the method make it infeasible to replicate the experimental timescale spanning from seconds to hours. Here, we present an atomistic simulation method where the motion of vacancies is accelerated, while the fast degrees of freedom are propagated with standard molecular dynamics. The resulting method is free of adjustable parameters and can predict microstructural evolution under irradiation at elevated temperatures. Simulating the microstructural evolution of tungsten under irradiation at dose rates of 10<small><sup>−5</sup></small>, 10<small><sup>−4</sup></small>, and 10<small><sup>−3</sup></small> dpa s<small><sup>−1</sup></small>, we find that increasing the temperature or reducing the dose rate primarily results in a reduction of the steady-state defect concentration, in qualitative agreement with deuterium retention and post-irradiation resistivity recovery experiments. The formation of a nanoscale void is observed if a system initially containing a large dislocation loop is irradiated. We present a minimally simple rate theory model which reproduces the time-dependent defect concentration and volume swelling behaviour obtained from the simulations.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 20","pages":" 7379-7394"},"PeriodicalIF":4.7000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d5ma00677e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d5ma00677e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The change in materials properties subjected to irradiation by highly energetic particles strongly depends on the irradiation dose rate. Atomistic simulations can in principle be used to predict microstructural evolution where experimental data is sparse or unavailable, however, fundamental limitations of the method make it infeasible to replicate the experimental timescale spanning from seconds to hours. Here, we present an atomistic simulation method where the motion of vacancies is accelerated, while the fast degrees of freedom are propagated with standard molecular dynamics. The resulting method is free of adjustable parameters and can predict microstructural evolution under irradiation at elevated temperatures. Simulating the microstructural evolution of tungsten under irradiation at dose rates of 10−5, 10−4, and 10−3 dpa s−1, we find that increasing the temperature or reducing the dose rate primarily results in a reduction of the steady-state defect concentration, in qualitative agreement with deuterium retention and post-irradiation resistivity recovery experiments. The formation of a nanoscale void is observed if a system initially containing a large dislocation loop is irradiated. We present a minimally simple rate theory model which reproduces the time-dependent defect concentration and volume swelling behaviour obtained from the simulations.

Abstract Image

工程时间尺度上辐照损伤的原子模拟:检查钨的剂量率效应
高能粒子辐照下材料性质的变化与辐照剂量率密切相关。原子模拟原则上可以用于预测实验数据稀疏或不可用的微观结构演变,然而,该方法的基本限制使其无法复制从秒到小时的实验时间尺度。本文提出了一种加速空位运动的原子模拟方法,同时用标准分子动力学传播快速自由度。由此产生的方法没有可调参数,可以预测高温辐照下的微观结构演变。模拟10−5、10−4和10−3 dpa s−1剂量率辐照下钨的微观结构演变,我们发现,增加温度或降低剂量率主要导致稳态缺陷浓度的降低,与氘保留和辐照后电阻率恢复实验定性一致。如果一个系统最初包含一个大的位错环辐照,观察到纳米级空洞的形成。我们提出了一个最小简单的速率理论模型,该模型再现了从模拟中获得的随时间变化的缺陷浓度和体积膨胀行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信