Cu dual-site doping: synergistic enhancement of OER activity through LDH and nickel foam interface engineering

IF 2.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Jinhui Li, Yuming Wei, Laixi Zou, Yaozong Liu, Shuaidong Li and Yue Luo
{"title":"Cu dual-site doping: synergistic enhancement of OER activity through LDH and nickel foam interface engineering","authors":"Jinhui Li, Yuming Wei, Laixi Zou, Yaozong Liu, Shuaidong Li and Yue Luo","doi":"10.1039/D5NJ03068D","DOIUrl":null,"url":null,"abstract":"<p >In the field of water electrolysis, the development of low-cost, highly active oxygen evolution reaction (OER) electrocatalysts remains a central focus. A Cu-doped layered double hydroxide (LDH) composite electrode system was successfully constructed on a nickel foam (NF) substrate <em>via</em> a urea hydrothermal synthesis method. Experimental results demonstrate that Cu doping not only participates in LDH formation but also induces surface modification of the NF substrate, creating Cu–Ni interaction zones that enhance synergistic catalytic effects for the OER. Morphological analysis reveals that Cu doping promotes the vertical growth of LDH nanosheets on the three-dimensional porous NF framework, significantly increasing the reactive interfacial area. Electrochemical tests show that the Cu–NiFe LDH/NF-Cu electrode requires only a 241 mV overpotential at a current density of 20 mA cm<small><sup>−2</sup></small>, with a Tafel slope as low as 96.8 mV dec<small><sup>−1</sup></small>, demonstrating exceptional catalytic activity. Moreover, the catalyst maintains 97.6% of its initial activity after a 10 h stability test. Density functional theory (DFT) calculations further elucidate that Cu doping enhances the intrinsic OER activity by optimizing the adsorption-free energy of the intermediate (*OOH) and reducing the reaction energy barrier. This study provides a new interfacial engineering strategy for designing high-performance LDH-based electrocatalysts.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 40","pages":" 17577-17587"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj03068d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of water electrolysis, the development of low-cost, highly active oxygen evolution reaction (OER) electrocatalysts remains a central focus. A Cu-doped layered double hydroxide (LDH) composite electrode system was successfully constructed on a nickel foam (NF) substrate via a urea hydrothermal synthesis method. Experimental results demonstrate that Cu doping not only participates in LDH formation but also induces surface modification of the NF substrate, creating Cu–Ni interaction zones that enhance synergistic catalytic effects for the OER. Morphological analysis reveals that Cu doping promotes the vertical growth of LDH nanosheets on the three-dimensional porous NF framework, significantly increasing the reactive interfacial area. Electrochemical tests show that the Cu–NiFe LDH/NF-Cu electrode requires only a 241 mV overpotential at a current density of 20 mA cm−2, with a Tafel slope as low as 96.8 mV dec−1, demonstrating exceptional catalytic activity. Moreover, the catalyst maintains 97.6% of its initial activity after a 10 h stability test. Density functional theory (DFT) calculations further elucidate that Cu doping enhances the intrinsic OER activity by optimizing the adsorption-free energy of the intermediate (*OOH) and reducing the reaction energy barrier. This study provides a new interfacial engineering strategy for designing high-performance LDH-based electrocatalysts.

Abstract Image

Cu双位点掺杂:LDH与泡沫镍界面工程协同增强OER活性
在水电解领域,低成本、高活性的析氧反应(OER)电催化剂的开发一直是人们关注的焦点。采用尿素水热合成法在泡沫镍(NF)衬底上成功构建了cu掺杂层状双氢氧化物(LDH)复合电极体系。实验结果表明,Cu掺杂不仅参与了LDH的形成,还诱导了NF底物的表面修饰,形成Cu - ni相互作用区,增强了OER的协同催化作用。形态学分析表明,Cu掺杂促进了LDH纳米片在三维多孔NF框架上的垂直生长,显著增加了反应界面面积。电化学测试表明,Cu-NiFe LDH/NF-Cu电极在电流密度为20 mA cm−2时仅需241 mV过电位,Tafel斜率低至96.8 mV dec−1,表现出优异的催化活性。经过10 h的稳定性测试,催化剂的活性仍保持在初始活性的97.6%。密度泛函理论(DFT)计算进一步阐明了Cu掺杂通过优化中间体(*OOH)的无吸附能和降低反应能垒来增强OER活性。本研究为设计高性能ldh基电催化剂提供了一种新的界面工程策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信