Maurizio Monti,Khalid M Siddiqui,Daniel Perez-Salinas,Naman Agarwal,Martin Bremholm,Xiang Li,Dharmalingam Prabhakaran,Xin Liu,Danylo Babich,Mathias Sander,Yunpei Deng,Henrik T Lemke,Roman Mankowsky,Xuerong Liu,Simon E Wall
{"title":"Ultrafast surface melting of orbital order in La0.5Sr1.5MnO4.","authors":"Maurizio Monti,Khalid M Siddiqui,Daniel Perez-Salinas,Naman Agarwal,Martin Bremholm,Xiang Li,Dharmalingam Prabhakaran,Xin Liu,Danylo Babich,Mathias Sander,Yunpei Deng,Henrik T Lemke,Roman Mankowsky,Xuerong Liu,Simon E Wall","doi":"10.1038/s41563-025-02379-4","DOIUrl":null,"url":null,"abstract":"Understanding how light modifies long-range order in quantum materials is key to improving our ability to control functionality. However, this is challenging if the response is heterogeneous. Here we address the most common form of light-induced heterogeneity-surface melting-and measure the dynamics of orbital order in the layered manganite La0.5Sr1.5MnO4. We isolate the surface dynamics from the bulk by measuring the orbital truncation rod and orbital Bragg peak. After photoexcitation, the orbital Bragg peak shows an unusual narrowing, which suggests an increase in correlation length of the probed volume. By contrast, the correlation length at the surface decreases. These differences can be reconciled if the material is heterogeneous, and light melts a less ordered surface. By isolating the surface response, we determine that the loss of long-range order is an incoherent process, which is probably accompanied by the formation of local polarons.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"1 1","pages":""},"PeriodicalIF":38.5000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02379-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding how light modifies long-range order in quantum materials is key to improving our ability to control functionality. However, this is challenging if the response is heterogeneous. Here we address the most common form of light-induced heterogeneity-surface melting-and measure the dynamics of orbital order in the layered manganite La0.5Sr1.5MnO4. We isolate the surface dynamics from the bulk by measuring the orbital truncation rod and orbital Bragg peak. After photoexcitation, the orbital Bragg peak shows an unusual narrowing, which suggests an increase in correlation length of the probed volume. By contrast, the correlation length at the surface decreases. These differences can be reconciled if the material is heterogeneous, and light melts a less ordered surface. By isolating the surface response, we determine that the loss of long-range order is an incoherent process, which is probably accompanied by the formation of local polarons.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.