CoCo-ST detects global and local biological structures in spatial transcriptomics datasets.

IF 19.1 1区 生物学 Q1 CELL BIOLOGY
Muhammad Aminu,Bo Zhu,Natalie Vokes,Hong Chen,Lingzhi Hong,Jianrong Li,Junya Fujimoto,Mehdi Chaib,Yuqiu Yang,Bo Wang,Alissa Poteete,Monique B Nilsson,Xiuning Le,Tina Cascone,David Jaffray,Nicholas Navin,Tao Wang,Lauren A Byers,Don L Gibbons,John Heymach,Ken Chen,Chao Cheng,Jianjun Zhang,Jia Wu
{"title":"CoCo-ST detects global and local biological structures in spatial transcriptomics datasets.","authors":"Muhammad Aminu,Bo Zhu,Natalie Vokes,Hong Chen,Lingzhi Hong,Jianrong Li,Junya Fujimoto,Mehdi Chaib,Yuqiu Yang,Bo Wang,Alissa Poteete,Monique B Nilsson,Xiuning Le,Tina Cascone,David Jaffray,Nicholas Navin,Tao Wang,Lauren A Byers,Don L Gibbons,John Heymach,Ken Chen,Chao Cheng,Jianjun Zhang,Jia Wu","doi":"10.1038/s41556-025-01781-z","DOIUrl":null,"url":null,"abstract":"Spatial domain detection methods often focus on high-variance structures, such as tumour-adjacent regions with sharp gene expression changes, while missing low-variance structures with subtle gene expression shifts, like those between adjacent normal and early adenoma regions. Here, to address this, we introduce 'compare and contrast spatial transcriptomics' (CoCo-ST), a graph contrastive feature representation framework. By comparing a target sample with a background sample, CoCo-ST detects both high-variance, broadly shared structures and low-variance, tissue-specific features. It offers technical advantages, including multisample integration, batch-effect correction and scalability across technologies from spot-level Visium data to single-cell Xenium Prime 5K and subcellular Visium HD data. We benchmarked CoCo-ST against ten state-of-the-art spatial-domain-detection algorithms using mouse lung precancerous samples, demonstrating its superior ability to identify low-variance spatial structures overlooked by other methods. CoCo-ST also effectively distinguishes cell clusters and niche structures in Visium HD and Xenium Prime 5K data. CoCo-ST is accessible at GitHub ( https://github.com/WuLabMDA/CoCo-ST ).","PeriodicalId":18977,"journal":{"name":"Nature Cell Biology","volume":"94 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41556-025-01781-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial domain detection methods often focus on high-variance structures, such as tumour-adjacent regions with sharp gene expression changes, while missing low-variance structures with subtle gene expression shifts, like those between adjacent normal and early adenoma regions. Here, to address this, we introduce 'compare and contrast spatial transcriptomics' (CoCo-ST), a graph contrastive feature representation framework. By comparing a target sample with a background sample, CoCo-ST detects both high-variance, broadly shared structures and low-variance, tissue-specific features. It offers technical advantages, including multisample integration, batch-effect correction and scalability across technologies from spot-level Visium data to single-cell Xenium Prime 5K and subcellular Visium HD data. We benchmarked CoCo-ST against ten state-of-the-art spatial-domain-detection algorithms using mouse lung precancerous samples, demonstrating its superior ability to identify low-variance spatial structures overlooked by other methods. CoCo-ST also effectively distinguishes cell clusters and niche structures in Visium HD and Xenium Prime 5K data. CoCo-ST is accessible at GitHub ( https://github.com/WuLabMDA/CoCo-ST ).
CoCo-ST在空间转录组学数据集中检测全局和局部生物结构。
空间域检测方法通常关注高变异结构,如基因表达变化剧烈的肿瘤邻近区域,而忽略基因表达变化微妙的低变异结构,如邻近正常和早期腺瘤区域之间的结构。在这里,为了解决这个问题,我们引入了“比较和对比空间转录组学”(CoCo-ST),这是一个图形对比特征表示框架。通过将目标样本与背景样本进行比较,CoCo-ST可以检测到高方差、广泛共享的结构和低方差、组织特异性的特征。它具有技术优势,包括多样本集成、批处理效果校正以及从现场级Visium数据到单细胞Xenium Prime 5K和亚细胞Visium HD数据的可扩展性。我们将CoCo-ST与十种最先进的空域检测算法(使用小鼠肺癌前样本)进行了基准测试,证明了其识别其他方法忽略的低方差空间结构的卓越能力。CoCo-ST还可以有效地区分Visium HD和Xenium Prime 5K数据中的细胞簇和生态位结构。CoCo-ST可在GitHub (https://github.com/WuLabMDA/CoCo-ST)访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Cell Biology
Nature Cell Biology 生物-细胞生物学
CiteScore
28.40
自引率
0.90%
发文量
219
审稿时长
3 months
期刊介绍: Nature Cell Biology, a prestigious journal, upholds a commitment to publishing papers of the highest quality across all areas of cell biology, with a particular focus on elucidating mechanisms underlying fundamental cell biological processes. The journal's broad scope encompasses various areas of interest, including but not limited to: -Autophagy -Cancer biology -Cell adhesion and migration -Cell cycle and growth -Cell death -Chromatin and epigenetics -Cytoskeletal dynamics -Developmental biology -DNA replication and repair -Mechanisms of human disease -Mechanobiology -Membrane traffic and dynamics -Metabolism -Nuclear organization and dynamics -Organelle biology -Proteolysis and quality control -RNA biology -Signal transduction -Stem cell biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信