Core-shell quantum dot-enabled monolayer MoS2 memories with high endurance

IF 17.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2025-10-13 DOI:10.1016/j.matt.2025.102488
Yuanyuan Qiu, Zhuo Zhao, Shuo Qiao, Yue Lu, Chaodan Pu, Qingqing Ji
{"title":"Core-shell quantum dot-enabled monolayer MoS2 memories with high endurance","authors":"Yuanyuan Qiu, Zhuo Zhao, Shuo Qiao, Yue Lu, Chaodan Pu, Qingqing Ji","doi":"10.1016/j.matt.2025.102488","DOIUrl":null,"url":null,"abstract":"Nonvolatile memories based on low-dimensional materials are pivotal for miniaturized data storage but face challenges in endurance and charge retention. We report a mixed-dimensional memory architecture integrating monolayer MoS<sub>2</sub> with CdSe@CdS core-shell quantum dots (QDs) to address these limitations. By synthesizing polyhedral QDs with facet-engineered surfaces and electrochemically inert passivating ligands, interfacial defects are substantially minimized, enabling efficient charge confinement within CdSe cores via Fowler-Nordheim tunneling. The optimized heterostructure device demonstrates a memory window of 140 V, an on/off ratio of 10<sup>6</sup>, endurance exceeding 5 × 10<sup>4</sup> cycles, and 96.5% charge retention over 10 years—outperforming previously reported QD-based memories. Furthermore, the cascaded charge transfer mechanism (MoS<sub>2</sub>→CdS→CdSe), corroborated by electrical measurements, highlights the critical role of synergistic structural and surface optimization in suppressing charge leakage. This work establishes a scalable platform combining 2D semiconductors and defect-engineered QDs, offering insights into charge dynamics and advancing the development of high-performance, nanoscale nonvolatile memories.","PeriodicalId":388,"journal":{"name":"Matter","volume":"22 1","pages":""},"PeriodicalIF":17.5000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2025.102488","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nonvolatile memories based on low-dimensional materials are pivotal for miniaturized data storage but face challenges in endurance and charge retention. We report a mixed-dimensional memory architecture integrating monolayer MoS2 with CdSe@CdS core-shell quantum dots (QDs) to address these limitations. By synthesizing polyhedral QDs with facet-engineered surfaces and electrochemically inert passivating ligands, interfacial defects are substantially minimized, enabling efficient charge confinement within CdSe cores via Fowler-Nordheim tunneling. The optimized heterostructure device demonstrates a memory window of 140 V, an on/off ratio of 106, endurance exceeding 5 × 104 cycles, and 96.5% charge retention over 10 years—outperforming previously reported QD-based memories. Furthermore, the cascaded charge transfer mechanism (MoS2→CdS→CdSe), corroborated by electrical measurements, highlights the critical role of synergistic structural and surface optimization in suppressing charge leakage. This work establishes a scalable platform combining 2D semiconductors and defect-engineered QDs, offering insights into charge dynamics and advancing the development of high-performance, nanoscale nonvolatile memories.

Abstract Image

具有高耐久性的核壳量子点支持的单层MoS2存储器
基于低维材料的非易失性存储器是小型化数据存储的关键,但在耐用性和电荷保持方面面临挑战。我们报告了一种将单层MoS2与CdSe@CdS核壳量子点(QDs)集成在一起的混合维存储架构,以解决这些限制。通过合成具有面工程表面和电化学惰性钝化配体的多面体量子点,可以大大减少界面缺陷,从而通过Fowler-Nordheim隧道在CdSe核心内实现有效的电荷约束。优化后的异质结构器件的记忆窗口为140 V,开关比为106,续航时间超过5 × 104次,超过10年的电荷保留率为96.5%,优于先前报道的基于量子点的存储器。此外,电测量证实了级联电荷转移机制(MoS2→CdS→CdSe),强调了协同结构和表面优化在抑制电荷泄漏中的关键作用。这项工作建立了一个结合二维半导体和缺陷工程量子点的可扩展平台,提供了对电荷动力学的见解,并推进了高性能、纳米级非易失性存储器的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信