Yifan Chen, Qi Wei, Jianhui Fu, Shuyi Lin, Hui Ren, Qi Liu, Luwei Zhou, Jun Yin, Mingjie Li
{"title":"Hot-Electron Extraction from Perovskite Quantum Dots for Photovoltage Enhancement","authors":"Yifan Chen, Qi Wei, Jianhui Fu, Shuyi Lin, Hui Ren, Qi Liu, Luwei Zhou, Jun Yin, Mingjie Li","doi":"10.1021/acsenergylett.5c02578","DOIUrl":null,"url":null,"abstract":"Rapid energy loss from hot-carrier relaxation above the bandgap limits optoelectronic efficiency. A key unmet challenge for hot-carrier utilization is developing practical systems that combine long hot-carrier lifetimes in absorbers with efficient extraction in devices. Here, we fabricate CsPb<sub>1–<i>x</i></sub>Sn<sub><i>x</i></sub>I<sub>3</sub> perovskite quantum dots (QDs) with long hot-carrier lifetimes under low pump intensity─critical for real applications. We also design Cs-doped TiO<sub>2</sub> nanorod arrays as hot-carrier high-pass filters; their tuned band structure enables around 82% hot-electron extraction from surface-sensitized QDs, confirmed by visible/near-IR transient absorption and supported by DFT/NAMD calculations. Proof-of-concept hot-carrier solar cells based on these QDs-sensitized nanorod arrays show a 12% open-circuit voltage increase (up to 1.13 eV) vs normal cells, attributed to hot-carrier photocurrent (73% quantum efficiency at 400 nm vs 600 nm). Hot-carrier thermionic emission modeling validates results, providing a promising platform for photovoltaics beyond the Shockley–Queisser limit.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"19 1","pages":""},"PeriodicalIF":18.2000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.5c02578","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid energy loss from hot-carrier relaxation above the bandgap limits optoelectronic efficiency. A key unmet challenge for hot-carrier utilization is developing practical systems that combine long hot-carrier lifetimes in absorbers with efficient extraction in devices. Here, we fabricate CsPb1–xSnxI3 perovskite quantum dots (QDs) with long hot-carrier lifetimes under low pump intensity─critical for real applications. We also design Cs-doped TiO2 nanorod arrays as hot-carrier high-pass filters; their tuned band structure enables around 82% hot-electron extraction from surface-sensitized QDs, confirmed by visible/near-IR transient absorption and supported by DFT/NAMD calculations. Proof-of-concept hot-carrier solar cells based on these QDs-sensitized nanorod arrays show a 12% open-circuit voltage increase (up to 1.13 eV) vs normal cells, attributed to hot-carrier photocurrent (73% quantum efficiency at 400 nm vs 600 nm). Hot-carrier thermionic emission modeling validates results, providing a promising platform for photovoltaics beyond the Shockley–Queisser limit.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.