{"title":"Podocyte Metabolic Reprogramming and Targeted Therapy.","authors":"Hongtu Hu,Wei Liang,Guohua Ding","doi":"10.1681/asn.0000000917","DOIUrl":null,"url":null,"abstract":"Podocytes, highly specialized glomerular epithelial cells, are essential for maintaining the filtration barrier integrity, yet they are particularly susceptible to metabolic stress. Recent advances have identified metabolic reprogramming as a central driver of podocyte injury in diverse glomerular diseases, including diabetic kidney disease and focal segmental glomerulosclerosis. Pathological stimuli, such as hyperglycemia, lipotoxicity, oxidative stress, and inflammatory cytokines, lead to profound alterations in podocyte metabolism, encompassing dysregulation of lipid, glucose, amino acid, and ion handling, as well as activation of immunometabolic pathways. These maladaptive changes result in mitochondrial dysfunction, cytoskeletal disorganization, and inflammatory forms of cell death including pyroptosis and ferroptosis. Mechanistic studies have elucidated the roles of nutrient-sensing pathways (AMPK, mTOR, SIRT1), innate immune sensors (NLRP3, cGAS-STING), and metabolic enzymes (CerS6, GLS2, ODC1) in orchestrating this reprogramming. Emerging evidence supports the therapeutic potential of modulating podocyte metabolism, as exemplified by the renoprotective effects of SGLT2 inhibitors, GLP-1 receptor agonists, PPAR agonists, and targeted inhibitors of inflammasome or lipid pathways. This Review synthesizes recent insights into the structural-metabolic coupling in podocytes, dissects the mechanisms of metabolic derangement in disease contexts, and discusses promising therapeutic strategies aimed at restoring metabolic homeostasis. Understanding the intersection between podocyte metabolism and injury response offers novel avenues for the prevention and treatment of chronic glomerular diseases.","PeriodicalId":17217,"journal":{"name":"Journal of The American Society of Nephrology","volume":"13 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Society of Nephrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1681/asn.0000000917","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Podocytes, highly specialized glomerular epithelial cells, are essential for maintaining the filtration barrier integrity, yet they are particularly susceptible to metabolic stress. Recent advances have identified metabolic reprogramming as a central driver of podocyte injury in diverse glomerular diseases, including diabetic kidney disease and focal segmental glomerulosclerosis. Pathological stimuli, such as hyperglycemia, lipotoxicity, oxidative stress, and inflammatory cytokines, lead to profound alterations in podocyte metabolism, encompassing dysregulation of lipid, glucose, amino acid, and ion handling, as well as activation of immunometabolic pathways. These maladaptive changes result in mitochondrial dysfunction, cytoskeletal disorganization, and inflammatory forms of cell death including pyroptosis and ferroptosis. Mechanistic studies have elucidated the roles of nutrient-sensing pathways (AMPK, mTOR, SIRT1), innate immune sensors (NLRP3, cGAS-STING), and metabolic enzymes (CerS6, GLS2, ODC1) in orchestrating this reprogramming. Emerging evidence supports the therapeutic potential of modulating podocyte metabolism, as exemplified by the renoprotective effects of SGLT2 inhibitors, GLP-1 receptor agonists, PPAR agonists, and targeted inhibitors of inflammasome or lipid pathways. This Review synthesizes recent insights into the structural-metabolic coupling in podocytes, dissects the mechanisms of metabolic derangement in disease contexts, and discusses promising therapeutic strategies aimed at restoring metabolic homeostasis. Understanding the intersection between podocyte metabolism and injury response offers novel avenues for the prevention and treatment of chronic glomerular diseases.
期刊介绍:
The Journal of the American Society of Nephrology (JASN) stands as the preeminent kidney journal globally, offering an exceptional synthesis of cutting-edge basic research, clinical epidemiology, meta-analysis, and relevant editorial content. Representing a comprehensive resource, JASN encompasses clinical research, editorials distilling key findings, perspectives, and timely reviews.
Editorials are skillfully crafted to elucidate the essential insights of the parent article, while JASN actively encourages the submission of Letters to the Editor discussing recently published articles. The reviews featured in JASN are consistently erudite and comprehensive, providing thorough coverage of respective fields. Since its inception in July 1990, JASN has been a monthly publication.
JASN publishes original research reports and editorial content across a spectrum of basic and clinical science relevant to the broad discipline of nephrology. Topics covered include renal cell biology, developmental biology of the kidney, genetics of kidney disease, cell and transport physiology, hemodynamics and vascular regulation, mechanisms of blood pressure regulation, renal immunology, kidney pathology, pathophysiology of kidney diseases, nephrolithiasis, clinical nephrology (including dialysis and transplantation), and hypertension. Furthermore, articles addressing healthcare policy and care delivery issues relevant to nephrology are warmly welcomed.