Comprehensive compensation of real-world degradations for robust single-pixel imaging.

IF 23.4 Q1 OPTICS
Zonghao Liu,Bohan Yang,Yifei Zhang,Junfei Shen,Xin Yuan,Mu Ku Chen,Fei Liu,Zihan Geng
{"title":"Comprehensive compensation of real-world degradations for robust single-pixel imaging.","authors":"Zonghao Liu,Bohan Yang,Yifei Zhang,Junfei Shen,Xin Yuan,Mu Ku Chen,Fei Liu,Zihan Geng","doi":"10.1038/s41377-025-02021-7","DOIUrl":null,"url":null,"abstract":"Single-pixel imaging (SPI) faces significant challenges in reconstructing high-quality images under complex real-world degradation conditions. This paper presents an innovative degradation model for the physical processes in SPI, providing the first comprehensive and quantitative analysis of various SPI noise sources encountered in real-world applications. Especially, pattern-dependent global noise propagation and object jitter modelling methods for SPI are proposed. Subsequently, a deep-blind neural network is developed to remove the necessity of obtaining parameters of all the degradation factors in real-world image compensation. Our method can operate without degradation parameters and significantly improve the resolution and fidelity of SPI image reconstruction. The deep-blind network training is guided by the proposed comprehensive SPI degradation model that describes real-world SPI impairments, enabling the network to generalize across a wide range of degradation combinations. The experiment validates its advanced performance in real-world SPI imaging at ultra-low sampling rates. The proposed method holds great potential for applications in remote sensing, biomedical imaging, and privacy-preserving surveillance.","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"4 1","pages":"365"},"PeriodicalIF":23.4000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-02021-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Single-pixel imaging (SPI) faces significant challenges in reconstructing high-quality images under complex real-world degradation conditions. This paper presents an innovative degradation model for the physical processes in SPI, providing the first comprehensive and quantitative analysis of various SPI noise sources encountered in real-world applications. Especially, pattern-dependent global noise propagation and object jitter modelling methods for SPI are proposed. Subsequently, a deep-blind neural network is developed to remove the necessity of obtaining parameters of all the degradation factors in real-world image compensation. Our method can operate without degradation parameters and significantly improve the resolution and fidelity of SPI image reconstruction. The deep-blind network training is guided by the proposed comprehensive SPI degradation model that describes real-world SPI impairments, enabling the network to generalize across a wide range of degradation combinations. The experiment validates its advanced performance in real-world SPI imaging at ultra-low sampling rates. The proposed method holds great potential for applications in remote sensing, biomedical imaging, and privacy-preserving surveillance.
鲁棒单像素成像的真实世界退化的综合补偿。
单像素成像(SPI)在复杂的现实退化条件下重建高质量图像面临着重大挑战。本文提出了一种创新的SPI物理过程退化模型,首次对实际应用中遇到的各种SPI噪声源进行了全面和定量的分析。特别提出了基于模式的SPI全局噪声传播和目标抖动建模方法。随后,开发了一种深度盲神经网络,消除了在实际图像补偿中需要获取所有退化因素参数的必要性。该方法无需退化参数,可显著提高SPI图像重建的分辨率和保真度。深度盲网络训练由所提出的综合SPI退化模型指导,该模型描述了现实世界的SPI缺陷,使网络能够在广泛的退化组合中进行推广。实验验证了其在超低采样率下的实际SPI成像中的先进性能。该方法在遥感、生物医学成像和隐私保护监控等领域具有很大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信