Gradient Micro‐Structure Design Enabling Mechanochemically Durable Single‐Crystalline Ni‐Rich Layered Oxides for Advanced Lithium‐Ion Batteries

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chenrui Zeng, Ruixin Zheng, Yiqi Cao, Fengxia Fan, Yan Huang, Yang Zhang, Haoruo Xiao, Chaozhu Shu, Bingsen Zhang
{"title":"Gradient Micro‐Structure Design Enabling Mechanochemically Durable Single‐Crystalline Ni‐Rich Layered Oxides for Advanced Lithium‐Ion Batteries","authors":"Chenrui Zeng, Ruixin Zheng, Yiqi Cao, Fengxia Fan, Yan Huang, Yang Zhang, Haoruo Xiao, Chaozhu Shu, Bingsen Zhang","doi":"10.1002/adfm.202519504","DOIUrl":null,"url":null,"abstract":"Ni‐rich layered oxides are promising positive electrode materials for lithium‐ion batteries (LIBs) owing to their high energy density and cost efficiency. Nevertheless, the intrinsic chemicophysical instability of Ni‐rich layered oxides severely limits the massive application. Herein, a unique gradient structure design from coherent rock‐salt phase surface structure to quasi super‐lattice matrix on the sub‐surface of single‐crystalline LiNi<jats:sub>0.83</jats:sub>Co<jats:sub>0.11</jats:sub>Mn<jats:sub>0.06</jats:sub>O<jats:sub>2</jats:sub> (GS‐SC‐NCM) is proposed to improve their stability. The introduced Ti<jats:sup>4+</jats:sup>/Nb<jats:sup>5+</jats:sup>/Zr<jats:sup>4+</jats:sup> ions are able to alleviate the overlay of O 2p and Ni 3d bands at the highly delithiated state, remarkably improving the stability of anion skeleton. Moreover, intragranular cracks and undesired lattice shrinkage during the H2‐H3 phase transition are greatly suppressed due to the ultra‐stable gradient structure design. In addition, the inert rock‐salt‐like phase on the surface of GS‐SC‐NCM hinders continuous evolution of interphase. Consequently, the superior cycling stability of GS‐SC‐NCM with high capacity retention of 92.9% after 150 cycles is achieved. Moreover, an Ah‐level pouch cell consisting of GS‐SC‐NCM positive electrode and commercial graphite negative electrode exhibits extraordinary cycling stability at 1C with 89.8% capacity retention after 450 cycles. This work represents significant progress in stabilizing single‐crystalline Ni‐rich layered oxides for an advanced secondary battery system, which is pivotal for accelerating the current electrification process.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"73 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202519504","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ni‐rich layered oxides are promising positive electrode materials for lithium‐ion batteries (LIBs) owing to their high energy density and cost efficiency. Nevertheless, the intrinsic chemicophysical instability of Ni‐rich layered oxides severely limits the massive application. Herein, a unique gradient structure design from coherent rock‐salt phase surface structure to quasi super‐lattice matrix on the sub‐surface of single‐crystalline LiNi0.83Co0.11Mn0.06O2 (GS‐SC‐NCM) is proposed to improve their stability. The introduced Ti4+/Nb5+/Zr4+ ions are able to alleviate the overlay of O 2p and Ni 3d bands at the highly delithiated state, remarkably improving the stability of anion skeleton. Moreover, intragranular cracks and undesired lattice shrinkage during the H2‐H3 phase transition are greatly suppressed due to the ultra‐stable gradient structure design. In addition, the inert rock‐salt‐like phase on the surface of GS‐SC‐NCM hinders continuous evolution of interphase. Consequently, the superior cycling stability of GS‐SC‐NCM with high capacity retention of 92.9% after 150 cycles is achieved. Moreover, an Ah‐level pouch cell consisting of GS‐SC‐NCM positive electrode and commercial graphite negative electrode exhibits extraordinary cycling stability at 1C with 89.8% capacity retention after 450 cycles. This work represents significant progress in stabilizing single‐crystalline Ni‐rich layered oxides for an advanced secondary battery system, which is pivotal for accelerating the current electrification process.
梯度微结构设计为先进锂离子电池提供机械化学耐用的单晶富镍层状氧化物
富镍层状氧化物具有高能量密度和高成本效益,是锂离子电池正极材料。然而,富镍层状氧化物固有的化学物理不稳定性严重限制了其大规模应用。为了提高单晶lini0.83 co0.11 mn0.060 o2 (GS‐SC‐NCM)的稳定性,提出了一种独特的梯度结构设计,从相干岩盐相表面结构到亚表面准超晶格矩阵。引入的Ti4+/Nb5+/Zr4+离子能够缓解o2p和Ni 3d带在高度衰减状态下的叠加,显著提高阴离子骨架的稳定性。此外,超稳定的梯度结构设计极大地抑制了H2 - H3相变过程中的晶内裂纹和不期望的晶格收缩。此外,GS - SC - NCM表面的惰性岩盐样相阻碍了间相的持续演化。结果表明,GS‐SC‐NCM具有良好的循环稳定性,循环150次后容量保持率高达92.9%。此外,由GS - SC - NCM正极和商用石墨负极组成的Ah级袋状电池在1C下表现出非凡的循环稳定性,循环450次后容量保持率为89.8%。这项工作代表了稳定单晶富镍层状氧化物用于先进二次电池系统的重大进展,这对于加速当前的电气化过程至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信