Co‐O‐Zn interface engineering for boosting CO2 hydrogenation to light olefins

IF 4 3区 工程技术 Q2 ENGINEERING, CHEMICAL
AIChE Journal Pub Date : 2025-10-14 DOI:10.1002/aic.70106
Qingling Xu, Bin Shao, Zheyi Sun, Zihao Gao, Zhicheng Xie, Jun Hu
{"title":"Co‐O‐Zn interface engineering for boosting CO2 hydrogenation to light olefins","authors":"Qingling Xu, Bin Shao, Zheyi Sun, Zihao Gao, Zhicheng Xie, Jun Hu","doi":"10.1002/aic.70106","DOIUrl":null,"url":null,"abstract":"The carbon dioxide (CO<jats:sub>2</jats:sub>) hydrogenation to light olefins (CO<jats:sub>2</jats:sub>‐to‐C<jats:sub>2</jats:sub>‐C<jats:sub>4</jats:sub><jats:sup>=</jats:sup>) represents a promising approach for its high‐value utilization but faces the crucial challenges of low CO<jats:sub>2</jats:sub> conversion efficiency and olefin selectivity. Herein, we develop an oxide–oxide interface engineering strategy to boost CO<jats:sub>2</jats:sub>‐to‐C<jats:sub>2</jats:sub>‐C<jats:sub>4</jats:sub><jats:sup>=</jats:sup>. A high CO<jats:sub>2</jats:sub> conversion efficiency of 27.4% and C<jats:sub>2</jats:sub>‐C<jats:sub>4</jats:sub><jats:sup>=</jats:sup> yield of 15.3% with excellent stability for 200 h are achieved on optimized CoO<jats:sub><jats:italic>x</jats:italic></jats:sub>/ZnGa<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub>–2.5/SAPO‐34 through the oxide–zeolite (OX‐ZEO) bifunctional tandem route. The well‐controlled Co‐O‐Zn oxide–oxide interface in CoO<jats:sub><jats:italic>x</jats:italic></jats:sub>/ZnGa<jats:sub>2</jats:sub>O<jats:sub>4</jats:sub> facilitates the bidentate adsorption of CO<jats:sub>2</jats:sub>, enabling the exposed C atom to be attracted by spilled‐over H* from the heterolytic cleavage on adjacent Zn‐O. Accordingly, the preferentially produced HCOO* leads to effective CO<jats:sub>2</jats:sub> conversion and selective generation of methanol precursor. Therefore, this oxide–oxide interfacial engineering offers a promising strategy for achieving highly efficient CO<jats:sub>2</jats:sub>‐to‐C<jats:sub>2</jats:sub>‐C<jats:sub>4</jats:sub><jats:sup>=</jats:sup> through OX‐ZEO route.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"64 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.70106","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The carbon dioxide (CO2) hydrogenation to light olefins (CO2‐to‐C2‐C4=) represents a promising approach for its high‐value utilization but faces the crucial challenges of low CO2 conversion efficiency and olefin selectivity. Herein, we develop an oxide–oxide interface engineering strategy to boost CO2‐to‐C2‐C4=. A high CO2 conversion efficiency of 27.4% and C2‐C4= yield of 15.3% with excellent stability for 200 h are achieved on optimized CoOx/ZnGa2O4–2.5/SAPO‐34 through the oxide–zeolite (OX‐ZEO) bifunctional tandem route. The well‐controlled Co‐O‐Zn oxide–oxide interface in CoOx/ZnGa2O4 facilitates the bidentate adsorption of CO2, enabling the exposed C atom to be attracted by spilled‐over H* from the heterolytic cleavage on adjacent Zn‐O. Accordingly, the preferentially produced HCOO* leads to effective CO2 conversion and selective generation of methanol precursor. Therefore, this oxide–oxide interfacial engineering offers a promising strategy for achieving highly efficient CO2‐to‐C2‐C4= through OX‐ZEO route.
Co - O - Zn界面工程促进CO2加氢生成轻质烯烃
二氧化碳(CO2)加氢制轻烯烃(CO2 - to - C2 - C4=)是一种有前途的高价值利用方法,但面临着低CO2转化效率和烯烃选择性的关键挑战。在此,我们开发了一种氧化物-氧化物界面工程策略来提高CO2 - to - C2 - C4=。优化后的CoOx/ ZnGa2O4-2.5 /SAPO - 34催化剂通过氧化物-沸石(OX - ZEO)双功能串联途径,CO2转化率为27.4%,C2 - C4=产率为15.3%,稳定性为200 h。CoOx/ZnGa2O4中的Co - O - Zn氧化物界面控制良好,有利于CO2的双齿吸附,使暴露的C原子被相邻Zn - O上的异裂解理溢出的H*所吸引。因此,优先生成的HCOO*导致了有效的CO2转化和甲醇前驱体的选择性生成。因此,这种氧化物-氧化物界面工程为通过OX - ZEO途径实现高效的CO2 - to - C2 - C4=提供了一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信