Abrar Hussain, Naheed Mojgani, Syed Muhammad Ali Shah, Nazia Kousar, Syed Abid Ali
{"title":"The emerging role of probiotics in the management and treatment of diabetic foot ulcer: a comprehensive review.","authors":"Abrar Hussain, Naheed Mojgani, Syed Muhammad Ali Shah, Nazia Kousar, Syed Abid Ali","doi":"10.3934/microbiol.2025027","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic foot ulcer (DFU) is a complex complication characterized by tissue damage and neurological problems in the lower extremities. Poor wound healing intensifies the severity of DFU, which currently has a 15%-20% prevalence and thus poses a significant healthcare challenge. DFU treatment is often considered complicated due to multifaceted problems, including high cost, low stability, and prolonged healing time. Thus, there is a need to find multidisciplinary, cost-effective, and potential treatment options. In parallel, the role of skin and gut microbiota has been highlighted, influencing the progression of DFU. Probiotics, when used in sufficient amounts, confer a health benefit to the host and are found to have a promising treatment potential for DFU. Probiotics exert beneficial effects that help to improve the management and healing of DFU, following various mechanisms like controlling hyperglycemia, enhancing immune function, modulating the microbiota, and maintaining glucose homeostasis, all of which contribute to improved management and healing of DFU. Despite the potential of probiotics in DFU treatment, their precise mechanisms, optimal strains, dosages, and experimental validation remain underexplored. To fully explore the probiotic potential for DFU, extensive animal studies and clinical trials are needed. This article provides a comprehensive overview of the current status of DFU, existing treatment options, current limitations, and the growing importance of probiotic therapy. It also emphasizes the application of advanced technologies, including artificial intelligence (AI) and machine learning (ML), in advancing DFU treatment strategies.</p>","PeriodicalId":46108,"journal":{"name":"AIMS Microbiology","volume":"11 3","pages":"649-678"},"PeriodicalIF":4.1000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12511964/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/microbiol.2025027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic foot ulcer (DFU) is a complex complication characterized by tissue damage and neurological problems in the lower extremities. Poor wound healing intensifies the severity of DFU, which currently has a 15%-20% prevalence and thus poses a significant healthcare challenge. DFU treatment is often considered complicated due to multifaceted problems, including high cost, low stability, and prolonged healing time. Thus, there is a need to find multidisciplinary, cost-effective, and potential treatment options. In parallel, the role of skin and gut microbiota has been highlighted, influencing the progression of DFU. Probiotics, when used in sufficient amounts, confer a health benefit to the host and are found to have a promising treatment potential for DFU. Probiotics exert beneficial effects that help to improve the management and healing of DFU, following various mechanisms like controlling hyperglycemia, enhancing immune function, modulating the microbiota, and maintaining glucose homeostasis, all of which contribute to improved management and healing of DFU. Despite the potential of probiotics in DFU treatment, their precise mechanisms, optimal strains, dosages, and experimental validation remain underexplored. To fully explore the probiotic potential for DFU, extensive animal studies and clinical trials are needed. This article provides a comprehensive overview of the current status of DFU, existing treatment options, current limitations, and the growing importance of probiotic therapy. It also emphasizes the application of advanced technologies, including artificial intelligence (AI) and machine learning (ML), in advancing DFU treatment strategies.