On the reproducibility of free energy surfaces in machine-learned collective variable spaces.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Florian M Dietrich, Matteo Salvalaglio
{"title":"On the reproducibility of free energy surfaces in machine-learned collective variable spaces.","authors":"Florian M Dietrich, Matteo Salvalaglio","doi":"10.1063/5.0287912","DOIUrl":null,"url":null,"abstract":"<p><p>As Machine-Learned Collective Variables (MLCVs) are becoming increasingly relevant in the molecular simulation literature, we discuss the necessary conditions to enable reproducibility in calculating and representing free energy surfaces. We note that the variability of the training process and the roughness of the hyperparameter space impose inherent limits on the reproducibility of results even when the mathematical structure of the model defining a collective variable is consistent. To this end, we propose the adoption of a geometric (gauge invariant) free energy representation to obtain consistent free energy differences across training instances and architectures. Furthermore, we introduce a normalization factor to model gradients for biased enhanced sampling. This factor effectively unifies free energy definitions and addresses practical issues preventing the widespread use and deployment of MLCVs.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"163 14","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0287912","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

As Machine-Learned Collective Variables (MLCVs) are becoming increasingly relevant in the molecular simulation literature, we discuss the necessary conditions to enable reproducibility in calculating and representing free energy surfaces. We note that the variability of the training process and the roughness of the hyperparameter space impose inherent limits on the reproducibility of results even when the mathematical structure of the model defining a collective variable is consistent. To this end, we propose the adoption of a geometric (gauge invariant) free energy representation to obtain consistent free energy differences across training instances and architectures. Furthermore, we introduce a normalization factor to model gradients for biased enhanced sampling. This factor effectively unifies free energy definitions and addresses practical issues preventing the widespread use and deployment of MLCVs.

机器学习集合变量空间中自由能曲面的可再现性。
随着机器学习集体变量(mlcv)在分子模拟文献中变得越来越重要,我们讨论了在计算和表示自由能表面时实现再现性的必要条件。我们注意到,训练过程的可变性和超参数空间的粗糙度对结果的可重复性施加了固有的限制,即使当定义集体变量的模型的数学结构是一致的。为此,我们建议采用几何(规范不变量)自由能表示来获得训练实例和体系结构之间一致的自由能差异。此外,我们引入了一个归一化因子来模拟有偏增强抽样的梯度。这一因素有效地统一了自由能的定义,并解决了防止mlcv广泛使用和部署的实际问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信