Anjelyka T Fasci, Maria A T Hoffman, Andrea L Smith, Matthew E Macasadia, Amanda J Tijerina, Robert Lyle Hood, Michael P DeLisi, Joel N Bixler
{"title":"Thermal damage induced changes in optical properties of the porcine dermis.","authors":"Anjelyka T Fasci, Maria A T Hoffman, Andrea L Smith, Matthew E Macasadia, Amanda J Tijerina, Robert Lyle Hood, Michael P DeLisi, Joel N Bixler","doi":"10.1117/1.JBO.30.10.105003","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Understanding thermal effects on tissue optical properties is fundamental for optimizing laser-based medical interventions. We address the critical knowledge gap of temperature-dependent changes in porcine dermis optical properties.</p><p><strong>Aim: </strong>We explore the thermal damage influence on the excised dermis optical properties at wavelengths from 400 to 1100 nm.</p><p><strong>Approach: </strong>Using a double-integrating-sphere system and inverse adding-doubling, we determined absorption, <math> <mrow><msub><mi>μ</mi> <mi>a</mi></msub> </mrow> </math> , and reduced scattering, <math> <mrow> <msubsup><mrow><mi>μ</mi></mrow> <mrow><mi>s</mi></mrow> <mrow><mo>'</mo></mrow> </msubsup> </mrow> </math> , coefficients before and after a 2.5-min thermal exposure.</p><p><strong>Results: </strong>We observed non-linear changes in both <math> <mrow><msub><mi>μ</mi> <mi>a</mi></msub> </mrow> </math> and <math> <mrow> <msubsup><mrow><mi>μ</mi></mrow> <mrow><mi>s</mi></mrow> <mrow><mo>'</mo></mrow> </msubsup> </mrow> </math> across temperature regimes. Minimal changes occurred at 37°C and 43°C. At 50°C, slight increases in both coefficients were observed. Significant alterations occurred at 60°C, with substantial increases in <math> <mrow> <msubsup><mrow><mi>μ</mi></mrow> <mrow><mi>s</mi></mrow> <mrow><mo>'</mo></mrow> </msubsup> </mrow> </math> and variable changes in <math> <mrow><msub><mi>μ</mi> <mi>a</mi></msub> </mrow> </math> depending on wavelength region. At 70°C, <math> <mrow> <msubsup><mrow><mi>μ</mi></mrow> <mrow><mi>s</mi></mrow> <mrow><mo>'</mo></mrow> </msubsup> </mrow> </math> values remained elevated, whereas <math> <mrow><msub><mi>μ</mi> <mi>a</mi></msub> </mrow> </math> showed mixed responses, with some wavelength regions decreasing, indicating progressive structural breakdown. The Arrhenius damage model showed an exponential increase with temperature.</p><p><strong>Conclusions: </strong>We reveal complex thermal-induced changes in tissue optical properties, particularly at higher temperatures. Findings reinforce a critical threshold between 50°C and 60°C where significant changes occur. The non-linear, wavelength-dependent responses emphasize the need for comprehensive data in laser-tissue interaction modeling, with important implications for optimizing laser-based medical treatments.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 10","pages":"105003"},"PeriodicalIF":2.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12515067/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.30.10.105003","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Significance: Understanding thermal effects on tissue optical properties is fundamental for optimizing laser-based medical interventions. We address the critical knowledge gap of temperature-dependent changes in porcine dermis optical properties.
Aim: We explore the thermal damage influence on the excised dermis optical properties at wavelengths from 400 to 1100 nm.
Approach: Using a double-integrating-sphere system and inverse adding-doubling, we determined absorption, , and reduced scattering, , coefficients before and after a 2.5-min thermal exposure.
Results: We observed non-linear changes in both and across temperature regimes. Minimal changes occurred at 37°C and 43°C. At 50°C, slight increases in both coefficients were observed. Significant alterations occurred at 60°C, with substantial increases in and variable changes in depending on wavelength region. At 70°C, values remained elevated, whereas showed mixed responses, with some wavelength regions decreasing, indicating progressive structural breakdown. The Arrhenius damage model showed an exponential increase with temperature.
Conclusions: We reveal complex thermal-induced changes in tissue optical properties, particularly at higher temperatures. Findings reinforce a critical threshold between 50°C and 60°C where significant changes occur. The non-linear, wavelength-dependent responses emphasize the need for comprehensive data in laser-tissue interaction modeling, with important implications for optimizing laser-based medical treatments.
期刊介绍:
The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.