NCM811-Sulfide Electrolyte Interfacial Degradation Mechanisms and Regulation Strategies in All-Solid-State Lithium Battery.

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-10-13 DOI:10.1002/cssc.202501033
Haoyu Feng, Guanghan Zhu, Ziming Wan, Feng Ryan Wang, Zhangxiang Hao, Junrun Feng
{"title":"NCM811-Sulfide Electrolyte Interfacial Degradation Mechanisms and Regulation Strategies in All-Solid-State Lithium Battery.","authors":"Haoyu Feng, Guanghan Zhu, Ziming Wan, Feng Ryan Wang, Zhangxiang Hao, Junrun Feng","doi":"10.1002/cssc.202501033","DOIUrl":null,"url":null,"abstract":"<p><p>The all-solid-state lithium battery (ASSLB) with LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> (NCM811) cathode and sulfide solid-state electrolyte (SSE) represents a transformative technology, offering enhanced safety and high energy density through the complete elimination of flammable liquid electrolyte and enabling the lithium metal anode. However, its commercialization is fundamentally limited by complex instabilities at the NCM811/sulfide SSE interface, which trigger coupled mechanical, chemical, and electrochemical degradation. The solid/solid interface creates complex dynamic feedback loops: mechanical stress from anisotropic volume changes accelerates interfacial chemical reactions; chemical degradation progressively alters electrochemical behavior; and continuous electrochemical cycling induces further mechanical instability. This multiscale coupling manifests as progressive contact loss, microcracks, detrimental space charge layer, and impedance growth, which collectively compromise performance under demanding conditions. This review establishes a coherent mechanistic framework to understand these highly interdependent degradation pathways, and systematically evaluates various stabilization strategies, including targeted surface modification, strategic bulk engineering, and innovative synergistic design approaches that specifically address the inherently coupled interface instability. Despite progress, intrinsic material incompatibilities persist, necessitating breakthroughs in materials design, interface engineering, characterization, and manufacturing. This work provides fundamental mechanistic insights into solid-state electrochemistry and practical guidance for developing commercially viable ASSLB.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501033"},"PeriodicalIF":6.6000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501033","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The all-solid-state lithium battery (ASSLB) with LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode and sulfide solid-state electrolyte (SSE) represents a transformative technology, offering enhanced safety and high energy density through the complete elimination of flammable liquid electrolyte and enabling the lithium metal anode. However, its commercialization is fundamentally limited by complex instabilities at the NCM811/sulfide SSE interface, which trigger coupled mechanical, chemical, and electrochemical degradation. The solid/solid interface creates complex dynamic feedback loops: mechanical stress from anisotropic volume changes accelerates interfacial chemical reactions; chemical degradation progressively alters electrochemical behavior; and continuous electrochemical cycling induces further mechanical instability. This multiscale coupling manifests as progressive contact loss, microcracks, detrimental space charge layer, and impedance growth, which collectively compromise performance under demanding conditions. This review establishes a coherent mechanistic framework to understand these highly interdependent degradation pathways, and systematically evaluates various stabilization strategies, including targeted surface modification, strategic bulk engineering, and innovative synergistic design approaches that specifically address the inherently coupled interface instability. Despite progress, intrinsic material incompatibilities persist, necessitating breakthroughs in materials design, interface engineering, characterization, and manufacturing. This work provides fundamental mechanistic insights into solid-state electrochemistry and practical guidance for developing commercially viable ASSLB.

全固态锂电池中ncm811 -硫化物电解质界面降解机理及调控策略
采用LiNi0.8Co0.1Mn0.1O2 (NCM811)阴极和硫化物固态电解质(SSE)的全固态锂电池(ASSLB)代表了一项变革性技术,通过完全消除易燃液体电解质和锂金属阳极,提高了安全性和高能量密度。然而,它的商业化从根本上受到NCM811/硫化物SSE界面复杂不稳定性的限制,这些不稳定性会引发机械、化学和电化学的耦合降解。固/固界面形成了复杂的动态反馈回路:各向异性体积变化产生的机械应力加速了界面化学反应;化学降解逐渐改变电化学行为;连续的电化学循环会导致进一步的机械不稳定性。这种多尺度耦合表现为逐渐的接触损耗、微裂纹、有害的空间电荷层和阻抗增长,这些因素共同影响了苛刻条件下的性能。这篇综述建立了一个连贯的机制框架来理解这些高度相互依赖的降解途径,并系统地评估了各种稳定策略,包括有针对性的表面改性、战略性体工程和创新的协同设计方法,这些方法专门针对固有耦合界面不稳定性。尽管取得了进展,但固有的材料不兼容性仍然存在,需要在材料设计、界面工程、表征和制造方面取得突破。这项工作为固态电化学提供了基本的机制见解,并为开发商业上可行的ASSLB提供了实践指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信