Simulation of heavy metal release from calcium arsenic residue under atmospheric and thermal weathering: implications for waste safety management.

IF 3.9 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL
Xiaolong Zhao, Ying Du, Guangli Wang, Zhiying Zhao, Yaguang Du, Dongyun Du
{"title":"Simulation of heavy metal release from calcium arsenic residue under atmospheric and thermal weathering: implications for waste safety management.","authors":"Xiaolong Zhao, Ying Du, Guangli Wang, Zhiying Zhao, Yaguang Du, Dongyun Du","doi":"10.1039/d5em00455a","DOIUrl":null,"url":null,"abstract":"<p><p>Calcium arsenic residue (CAR), generated during nonferrous metal smelting and acidic wastewater treatment, pose significant environmental risks due to its instability under atmospheric exposure. This study investigates the combined effects of atmospheric oxidants (O<sub>2</sub>/CO<sub>2</sub>) and thermal aging on the weathering-driven mobilization of arsenic, zinc, and cadmium from CAR. Simulated storage experiments revealed that exposure to air and elevated temperatures (55 °C) substantially increased metal release, with cumulative concentrations of As, Zn, and Cd exceeding United States Environmental Protection Agency (USEPA) thresholds. Mineralogical and pore structure analyses showed enhanced fragmentation and porosity (BET area increased by 3.0-fold), promoting metal dissolution. Sequential extraction and XPS analyses identified phase transformations and redox-driven mobilization mechanisms. DFT simulations confirmed that H<sub>2</sub>CO<sub>3</sub> adsorption onto calcium arsenate surfaces drives carbonation and destabilization. These findings emphasize the need for controlled storage conditions-limiting oxygen and CO<sub>2</sub> exposure and maintaining temperatures below room temperature-to mitigate heavy metal leaching. This work provides a scientific basis for improving landfill design and regulatory management of arsenic-bearing industrial waste.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1039/d5em00455a","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Calcium arsenic residue (CAR), generated during nonferrous metal smelting and acidic wastewater treatment, pose significant environmental risks due to its instability under atmospheric exposure. This study investigates the combined effects of atmospheric oxidants (O2/CO2) and thermal aging on the weathering-driven mobilization of arsenic, zinc, and cadmium from CAR. Simulated storage experiments revealed that exposure to air and elevated temperatures (55 °C) substantially increased metal release, with cumulative concentrations of As, Zn, and Cd exceeding United States Environmental Protection Agency (USEPA) thresholds. Mineralogical and pore structure analyses showed enhanced fragmentation and porosity (BET area increased by 3.0-fold), promoting metal dissolution. Sequential extraction and XPS analyses identified phase transformations and redox-driven mobilization mechanisms. DFT simulations confirmed that H2CO3 adsorption onto calcium arsenate surfaces drives carbonation and destabilization. These findings emphasize the need for controlled storage conditions-limiting oxygen and CO2 exposure and maintaining temperatures below room temperature-to mitigate heavy metal leaching. This work provides a scientific basis for improving landfill design and regulatory management of arsenic-bearing industrial waste.

大气和热风化作用下砷钙渣重金属释放模拟:对废物安全管理的启示。
在有色金属冶炼和酸性废水处理过程中产生的砷酸钙渣(CAR)在大气暴露下具有不稳定性,对环境造成重大危害。本研究探讨了大气氧化剂(O2/CO2)和热老化对CAR中砷、锌和镉的风化动员的综合影响。模拟储存实验表明,暴露于空气和高温(55°C)中会大大增加金属释放,砷、锌和镉的累积浓度超过美国环境保护署(USEPA)的阈值。矿物学和孔隙结构分析表明,岩石破碎度和孔隙度增加(BET面积增加了3.0倍),促进了金属的溶解。序列提取和XPS分析确定了相变和氧化还原驱动的动员机制。DFT模拟证实H2CO3吸附在砷酸钙表面驱动碳化和不稳定。这些发现强调了控制储存条件的必要性——限制氧气和二氧化碳的暴露,并保持温度低于室温——以减轻重金属的浸出。为改进含砷工业垃圾填埋场设计和规范管理提供了科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science: Processes & Impacts
Environmental Science: Processes & Impacts CHEMISTRY, ANALYTICAL-ENVIRONMENTAL SCIENCES
CiteScore
9.50
自引率
3.60%
发文量
202
审稿时长
1 months
期刊介绍: Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信