Min Kyung Sung , Jin Young Heo , Seonhye Jang , Hansol Kim , Youngdo Jeong , Sang-Jae Lee , Seong-Bo Kim , Sung Tae Kim
{"title":"SpyTag/SpyCatcher-ligated nanostructured lipid carriers for active mammary cancer targeting","authors":"Min Kyung Sung , Jin Young Heo , Seonhye Jang , Hansol Kim , Youngdo Jeong , Sang-Jae Lee , Seong-Bo Kim , Sung Tae Kim","doi":"10.1016/j.jiec.2025.05.017","DOIUrl":null,"url":null,"abstract":"<div><div>Nanostructured lipid carriers (NLCs) are the second generation of lipid nanoparticles for delivering pharmaceutical drugs. The current study aimed to improve the cellular uptake of NLCs by preparing surface functionalization. In this study, surface-functionalized NLCs were prepared by conjugating affibody molecules targeting HER2 or the cell-penetrating peptide TAT using the SpyTag/SpyCatcher system for enhanced cellular uptake. The cellular uptake and internalization mechanisms of functionalized NLCs were evaluated. NLCs were successfully prepared with nanosized lipid particles (<160 nm) and maintained storage stability, which was assessed by particle size, polydispersity index, and zeta potential values. Functionalized NLCs with HER2 affibody or TAT peptide were endocytosed when taken up by various cell lines, including SK-BR-3, MCF-7, MDA-MB-231, and HeLa, which were evaluated by flow cytometry and confocal microscopy analysis. These results demonstrated that surface functionalization significantly enhanced the cellular uptake and concomitant cytotoxicity of the NLCs. These findings suggest that the SpyTag/SpyCatcher-based strategy is effective for surface functionalization of lipid-based drug carriers.</div></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"152 ","pages":"Pages 488-496"},"PeriodicalIF":5.9000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226086X25003284","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanostructured lipid carriers (NLCs) are the second generation of lipid nanoparticles for delivering pharmaceutical drugs. The current study aimed to improve the cellular uptake of NLCs by preparing surface functionalization. In this study, surface-functionalized NLCs were prepared by conjugating affibody molecules targeting HER2 or the cell-penetrating peptide TAT using the SpyTag/SpyCatcher system for enhanced cellular uptake. The cellular uptake and internalization mechanisms of functionalized NLCs were evaluated. NLCs were successfully prepared with nanosized lipid particles (<160 nm) and maintained storage stability, which was assessed by particle size, polydispersity index, and zeta potential values. Functionalized NLCs with HER2 affibody or TAT peptide were endocytosed when taken up by various cell lines, including SK-BR-3, MCF-7, MDA-MB-231, and HeLa, which were evaluated by flow cytometry and confocal microscopy analysis. These results demonstrated that surface functionalization significantly enhanced the cellular uptake and concomitant cytotoxicity of the NLCs. These findings suggest that the SpyTag/SpyCatcher-based strategy is effective for surface functionalization of lipid-based drug carriers.
期刊介绍:
Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.