Defect-engineered WO3-x/WO3 pseudocapacitive proton storage electrode with enhanced capacity and lowered impedance via vacancy doping and hydrothermal-assisted electro-coating

IF 5.9 3区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lukman O. Animasahun , Saheed A. Adewinbi , Maymounah N. Alharthi , Omar H. Abd-Elkader , Haekyonug Kim , Bidini A. Taleatu , Adeniyi Y. Fasasi
{"title":"Defect-engineered WO3-x/WO3 pseudocapacitive proton storage electrode with enhanced capacity and lowered impedance via vacancy doping and hydrothermal-assisted electro-coating","authors":"Lukman O. Animasahun ,&nbsp;Saheed A. Adewinbi ,&nbsp;Maymounah N. Alharthi ,&nbsp;Omar H. Abd-Elkader ,&nbsp;Haekyonug Kim ,&nbsp;Bidini A. Taleatu ,&nbsp;Adeniyi Y. Fasasi","doi":"10.1016/j.jiec.2025.05.023","DOIUrl":null,"url":null,"abstract":"<div><div>Proton batteries are a promising, sustainable alternative to lithium-ion batteries due to the abundance of hydrogen and its smaller ionic radius, which facilitates its seamless intercalation in electroactive materials. However, their progress depends on the<!--> <!-->development of cost-effective, high-capacity electrode materials. Herein, we report the<!--> <!-->successful fabrication of a<!--> <!-->binder-less, defect-engineered WO<sub>3-x</sub>/WO<sub>3</sub> pseudocapacitive proton storage electrode (HTT_WO<sub>3-x</sub>) through scavenging of atomic sub-surface oxygen from hydrothermal-treated electro-coated WO<sub>3</sub> films (HTT_WO<sub>3</sub>). The defect-engineered electrode (HTT_WO<sub>3-x</sub>) combined improved mass load with enhanced electronic and ionic transport behaviour. The electrode achieved an areal capacitance of 42.13 mF∙cm<sup>−2</sup> at 5.00 mV∙s<sup>−1</sup>, approximately 300 % higher than<!--> <!-->the electro-coated WO<sub>3</sub><span> seed electrode. The hydrothermal treatment yielded an increased mass load and areal capacity, further improved through lowered impedance parameters and better interfacial characteristics by defect engineering. This study offered a facile method for achieving binder-free coating of high-mass load proton storage active materials without compromising their ionic and electronic transport.</span></div></div>","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"152 ","pages":"Pages 554-564"},"PeriodicalIF":5.9000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226086X2500334X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Proton batteries are a promising, sustainable alternative to lithium-ion batteries due to the abundance of hydrogen and its smaller ionic radius, which facilitates its seamless intercalation in electroactive materials. However, their progress depends on the development of cost-effective, high-capacity electrode materials. Herein, we report the successful fabrication of a binder-less, defect-engineered WO3-x/WO3 pseudocapacitive proton storage electrode (HTT_WO3-x) through scavenging of atomic sub-surface oxygen from hydrothermal-treated electro-coated WO3 films (HTT_WO3). The defect-engineered electrode (HTT_WO3-x) combined improved mass load with enhanced electronic and ionic transport behaviour. The electrode achieved an areal capacitance of 42.13 mF∙cm−2 at 5.00 mV∙s−1, approximately 300 % higher than the electro-coated WO3 seed electrode. The hydrothermal treatment yielded an increased mass load and areal capacity, further improved through lowered impedance parameters and better interfacial characteristics by defect engineering. This study offered a facile method for achieving binder-free coating of high-mass load proton storage active materials without compromising their ionic and electronic transport.
缺陷工程WO3-x/WO3赝电容质子存储电极,通过空位掺杂和水热辅助电镀膜增强容量和降低阻抗
质子电池是一种很有前途的、可持续的锂离子电池替代品,因为它具有丰富的氢和较小的离子半径,这有利于它在电活性材料中的无缝嵌入。然而,它们的进展取决于成本效益高、容量大的电极材料的发展。本文报道了一种无粘结剂、缺陷工程的WO3-x/WO3伪电容性质子存储电极(HTT_WO3-x)的成功制备,该电极通过清除水热处理的电涂WO3薄膜(HTT_WO3)中的原子亚表面氧。缺陷工程电极(HTT_WO3-x)结合了改进的质量负载和增强的电子和离子传输行为。在5.00 mV∙s−1下,电极的面电容达到42.13 mF∙cm−2,比电包WO3种子电极高约300%。水热处理提高了质量载荷和面积容量,并通过缺陷工程降低了阻抗参数和改善了界面特性,进一步提高了质量载荷和面积容量。本研究提供了一种简便的方法来实现高质量负载质子存储活性材料的无粘结剂涂层,而不影响其离子和电子输运。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.40
自引率
6.60%
发文量
639
审稿时长
29 days
期刊介绍: Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信