Synergistic Enhancement of Thermal Conductivity and Electromagnetic Shielding via Dual Cu···π and Cu–O Bond-Bridged Graphene/MXene Interfaces

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Shikun Zhang, , , Jun Qian, , , Yu Qi Jun, , , Jia-Qi Bai, , , Jingshuai Chen*, , , Mingyuan Wu, , , Song Sun, , and , Chang-Jie Mao, 
{"title":"Synergistic Enhancement of Thermal Conductivity and Electromagnetic Shielding via Dual Cu···π and Cu–O Bond-Bridged Graphene/MXene Interfaces","authors":"Shikun Zhang,&nbsp;, ,&nbsp;Jun Qian,&nbsp;, ,&nbsp;Yu Qi Jun,&nbsp;, ,&nbsp;Jia-Qi Bai,&nbsp;, ,&nbsp;Jingshuai Chen*,&nbsp;, ,&nbsp;Mingyuan Wu,&nbsp;, ,&nbsp;Song Sun,&nbsp;, and ,&nbsp;Chang-Jie Mao,&nbsp;","doi":"10.1021/acsaelm.5c01644","DOIUrl":null,"url":null,"abstract":"<p >Polymer-based thermally conductive films face significant challenges related to interfacial thermal resistance, especially when required to deliver both efficient heat dissipation and electromagnetic interference (EMI) shielding in advanced electronic applications. In this study, we present a multifunctional composite system by incorporating copper-decorated hydroxylated graphene (Cu-GOH) and MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub><i>X</i></sub>) into a poly(vinylidene fluoride) (PVDF) matrix. The hybrid filler network is engineered through dual interfacial interactions: Cu···π bonding with the graphene framework and Cu–O coordination with the MXene surface, establishing continuous thermal and electrical transport pathways. At an optimized filler loading (22.5 wt % Cu-GOH and 2.5 wt % MXene), the composite achieves: (i) a through-plane thermal conductivity of 3.64 W·m<sup>–1</sup>·K<sup>–1</sup>, representing a 19.22-fold enhancement over pristine PVDF; (ii) an in-plane electrical conductivity of 6.44 × 10<sup>–4</sup> S·cm<sup>–1</sup>; and (iii) robust X-band EMI shielding effectiveness (≥25 dB across 8–12 GHz), exceeding military-grade requirements. Additionally, the hierarchically organized filler architecture enhances mechanical integrity, addressing the common trade-offs between functionality and durability in polymer composites. These findings demonstrate the potential of Cu-GOH/MXene/PVDF composites for integration into high-performance thermal management and EMI shielding components in aerospace systems, satellite communications, and next-generation renewable energy technologies.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 19","pages":"9239–9248"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c01644","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer-based thermally conductive films face significant challenges related to interfacial thermal resistance, especially when required to deliver both efficient heat dissipation and electromagnetic interference (EMI) shielding in advanced electronic applications. In this study, we present a multifunctional composite system by incorporating copper-decorated hydroxylated graphene (Cu-GOH) and MXene (Ti3C2TX) into a poly(vinylidene fluoride) (PVDF) matrix. The hybrid filler network is engineered through dual interfacial interactions: Cu···π bonding with the graphene framework and Cu–O coordination with the MXene surface, establishing continuous thermal and electrical transport pathways. At an optimized filler loading (22.5 wt % Cu-GOH and 2.5 wt % MXene), the composite achieves: (i) a through-plane thermal conductivity of 3.64 W·m–1·K–1, representing a 19.22-fold enhancement over pristine PVDF; (ii) an in-plane electrical conductivity of 6.44 × 10–4 S·cm–1; and (iii) robust X-band EMI shielding effectiveness (≥25 dB across 8–12 GHz), exceeding military-grade requirements. Additionally, the hierarchically organized filler architecture enhances mechanical integrity, addressing the common trade-offs between functionality and durability in polymer composites. These findings demonstrate the potential of Cu-GOH/MXene/PVDF composites for integration into high-performance thermal management and EMI shielding components in aerospace systems, satellite communications, and next-generation renewable energy technologies.

Abstract Image

双Cu···π和Cu - o键桥接石墨烯/MXene界面的热导率和电磁屏蔽协同增强
基于聚合物的导热薄膜面临着与界面热阻相关的重大挑战,特别是当需要在高级电子应用中提供高效散热和电磁干扰(EMI)屏蔽时。在这项研究中,我们提出了一种多功能复合体系,将铜修饰的羟基化石墨烯(Cu-GOH)和MXene (Ti3C2TX)结合到聚偏氟乙烯(PVDF)基体中。混合填料网络是通过双重界面相互作用设计的:Cu···π与石墨烯框架成键,Cu - o与MXene表面配位,建立连续的热和电传输途径。在优化的填料负载(22.5 wt % Cu-GOH和2.5 wt % MXene)下,复合材料实现了:(i)通过平面的导热系数为3.64 W·m-1·K-1,比原始PVDF提高了19.22倍;(ii)面内电导率为6.44 × 10-4 S·cm-1;(iii)稳健的x波段电磁干扰屏蔽效能(在8-12 GHz范围内≥25 dB),超过军用级要求。此外,分层组织的填料结构提高了机械完整性,解决了聚合物复合材料在功能和耐用性之间的常见权衡。这些发现证明了Cu-GOH/MXene/PVDF复合材料在航空航天系统、卫星通信和下一代可再生能源技术中集成高性能热管理和EMI屏蔽组件的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信