Tuning Terahertz Emission via Interfacial Perpendicular Magnetic Anisotropy in Co/Gd/Co Spintronic Heterostructures

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Hongtao Dai, , , Yuqing Zou, , , Shanshan Hu, , , Jingying Zhang, , , Yiwen Song, , , Ziyang Li, , , Jiali Zhang, , , Yuna Song, , , Xiaorui Ma, , , Qingyuan Jin, , , Yaowen Liu, , and , Zongzhi Zhang*, 
{"title":"Tuning Terahertz Emission via Interfacial Perpendicular Magnetic Anisotropy in Co/Gd/Co Spintronic Heterostructures","authors":"Hongtao Dai,&nbsp;, ,&nbsp;Yuqing Zou,&nbsp;, ,&nbsp;Shanshan Hu,&nbsp;, ,&nbsp;Jingying Zhang,&nbsp;, ,&nbsp;Yiwen Song,&nbsp;, ,&nbsp;Ziyang Li,&nbsp;, ,&nbsp;Jiali Zhang,&nbsp;, ,&nbsp;Yuna Song,&nbsp;, ,&nbsp;Xiaorui Ma,&nbsp;, ,&nbsp;Qingyuan Jin,&nbsp;, ,&nbsp;Yaowen Liu,&nbsp;, and ,&nbsp;Zongzhi Zhang*,&nbsp;","doi":"10.1021/acsaelm.5c01635","DOIUrl":null,"url":null,"abstract":"<p >Spintronic terahertz (THz) emitters based on the inverse spin Hall effect (ISHE) are promising for ultrafast optoelectronic applications due to their high emission intensity and tunability. Among them, rare-earth (RE)–transition-metal (TM) ferrimagnetic systems stand out for their high thermal stability, robustness to magnetic interference, and ease of magnetization control. However, the nonmonotonic THz emission behavior observed with varying RE content or measurement temperature remains controversial. In this study, we systematically explore THz emission in Co/Gd/Co heterostructures with an engineered interfacial perpendicular magnetic anisotropy (PMA). By inserting an ultrathin Gd spacer layer (0.3–0.7 nm) between ferromagnetic Co layers, we observe a pronounced suppression in THz signal amplitude─mimicking the behavior of nearly compensated RE–TM alloys. Through a combined thickness-dependent analysis of Co and Gd layers, we attribute this suppression to strong interfacial PMA at the Co/Gd interface, which reduces the in-plane magnetization component necessary for efficient spin-to-charge conversion via the ISHE. Our results not only clarify the underlying mechanism responsible for THz emission minima in RE–TM systems but also highlight interfacial PMA as a key tuning parameter for optimizing spintronic THz emitter performance.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 19","pages":"9219–9226"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c01635","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Spintronic terahertz (THz) emitters based on the inverse spin Hall effect (ISHE) are promising for ultrafast optoelectronic applications due to their high emission intensity and tunability. Among them, rare-earth (RE)–transition-metal (TM) ferrimagnetic systems stand out for their high thermal stability, robustness to magnetic interference, and ease of magnetization control. However, the nonmonotonic THz emission behavior observed with varying RE content or measurement temperature remains controversial. In this study, we systematically explore THz emission in Co/Gd/Co heterostructures with an engineered interfacial perpendicular magnetic anisotropy (PMA). By inserting an ultrathin Gd spacer layer (0.3–0.7 nm) between ferromagnetic Co layers, we observe a pronounced suppression in THz signal amplitude─mimicking the behavior of nearly compensated RE–TM alloys. Through a combined thickness-dependent analysis of Co and Gd layers, we attribute this suppression to strong interfacial PMA at the Co/Gd interface, which reduces the in-plane magnetization component necessary for efficient spin-to-charge conversion via the ISHE. Our results not only clarify the underlying mechanism responsible for THz emission minima in RE–TM systems but also highlight interfacial PMA as a key tuning parameter for optimizing spintronic THz emitter performance.

Abstract Image

利用界面垂直磁各向异性调谐Co/Gd/Co自旋电子异质结构中的太赫兹发射
基于逆自旋霍尔效应(ISHE)的自旋电子太赫兹(THz)发射器由于其高发射强度和可调性,在超快光电应用中具有广阔的应用前景。其中,稀土(RE) -过渡金属(TM)铁磁体系以其高热稳定性、对磁干扰的鲁棒性和易于磁化控制而脱颖而出。然而,随稀土含量或测量温度的变化,观测到的非单调太赫兹辐射行为仍然存在争议。在这项研究中,我们系统地研究了Co/Gd/Co异质结构中具有工程界面垂直磁各向异性(PMA)的太赫兹辐射。通过在铁磁性Co层之间插入超薄Gd间隔层(0.3-0.7 nm),我们观察到太赫兹信号幅度的明显抑制──模拟了几乎补偿的RE-TM合金的行为。通过对Co和Gd层的厚度相关分析,我们将这种抑制归因于Co/Gd界面处的强界面PMA,这减少了通过ISHE进行有效自旋到电荷转换所需的平面内磁化分量。我们的研究结果不仅阐明了RE-TM系统中太赫兹发射最小的潜在机制,而且强调了界面PMA是优化自旋电子太赫兹发射器性能的关键调谐参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信