On-Chip Ferromagnetic Resonance for van der Waals Heterostructures: Anisotropy and Damping of Cobalt Interfaced with Exfoliated 2D Materials

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Karen Sobnath, , , Roberto Bellelli, , , Mehrdad Rahimi, , , Linsai Chen, , , Guillaume Wang, , , Roméo Bonnet, , , Pascal Filloux, , , Martial Nicolas, , , Batiste Janvier, , , Philippe Lafarge, , , Maria Luisa Della Rocca, , , Pascal Martin, , , Clément Barraud, , and , François Mallet*, 
{"title":"On-Chip Ferromagnetic Resonance for van der Waals Heterostructures: Anisotropy and Damping of Cobalt Interfaced with Exfoliated 2D Materials","authors":"Karen Sobnath,&nbsp;, ,&nbsp;Roberto Bellelli,&nbsp;, ,&nbsp;Mehrdad Rahimi,&nbsp;, ,&nbsp;Linsai Chen,&nbsp;, ,&nbsp;Guillaume Wang,&nbsp;, ,&nbsp;Roméo Bonnet,&nbsp;, ,&nbsp;Pascal Filloux,&nbsp;, ,&nbsp;Martial Nicolas,&nbsp;, ,&nbsp;Batiste Janvier,&nbsp;, ,&nbsp;Philippe Lafarge,&nbsp;, ,&nbsp;Maria Luisa Della Rocca,&nbsp;, ,&nbsp;Pascal Martin,&nbsp;, ,&nbsp;Clément Barraud,&nbsp;, and ,&nbsp;François Mallet*,&nbsp;","doi":"10.1021/acsaelm.5c00702","DOIUrl":null,"url":null,"abstract":"<p >Designing the next generation of ultralow-power spintronic devices hinges on identifying suitable combinations of materials and interfaces that effectively process spin information. Two-dimensional (2D) materials and their associated van der Waals heterostructures offer a promising platform thanks to their ideal interfaces and exceptional tunability. However, the typical lateral dimensions of state-of-the-art exfoliated crystals are constrained to a few tens of micrometers. Addressing this limitation, we introduce a fully on-chip ferromagnetic resonance (FMR) setup optimized for these constraints. Our setup demonstrates remarkable sensitivity, capable of probing the magnetization dynamics of single cobalt (Co) patches with surfaces below 10<sup>2</sup> μm<sup>2</sup> and thicknesses in the 10 nm range at room temperature. Furthermore, the versatility of our prototype toward studying stacked van der Waals heterostructure spintronics is demonstrated by shedding light onto Co surface anisotropy and magnetic damping when proximitized by multilayer thick 2D materials such as graphene, hBN, and WSe<sub>2</sub>.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 19","pages":"8821–8827"},"PeriodicalIF":4.7000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsaelm.5c00702","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c00702","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Designing the next generation of ultralow-power spintronic devices hinges on identifying suitable combinations of materials and interfaces that effectively process spin information. Two-dimensional (2D) materials and their associated van der Waals heterostructures offer a promising platform thanks to their ideal interfaces and exceptional tunability. However, the typical lateral dimensions of state-of-the-art exfoliated crystals are constrained to a few tens of micrometers. Addressing this limitation, we introduce a fully on-chip ferromagnetic resonance (FMR) setup optimized for these constraints. Our setup demonstrates remarkable sensitivity, capable of probing the magnetization dynamics of single cobalt (Co) patches with surfaces below 102 μm2 and thicknesses in the 10 nm range at room temperature. Furthermore, the versatility of our prototype toward studying stacked van der Waals heterostructure spintronics is demonstrated by shedding light onto Co surface anisotropy and magnetic damping when proximitized by multilayer thick 2D materials such as graphene, hBN, and WSe2.

范德华异质结构的片上铁磁共振:钴与剥落二维材料界面的各向异性和阻尼
设计下一代超低功率自旋电子器件取决于确定有效处理自旋信息的材料和界面的合适组合。二维(2D)材料及其相关的范德华异质结构由于其理想的界面和卓越的可调性提供了一个有前途的平台。然而,最先进的剥落晶体的典型横向尺寸被限制在几十微米。为了解决这一限制,我们引入了针对这些限制进行优化的全片上铁磁共振(FMR)设置。该装置在室温下能够探测表面小于102 μm2、厚度在10 nm范围内的单钴(Co)贴片的磁化动力学,具有很高的灵敏度。此外,我们的原型在研究堆叠范德华异质结构自旋电子学方面的多功能性得到了证明,当多层厚二维材料(如石墨烯,hBN和WSe2)近似时,将光投射到Co表面的各向异性和磁阻尼上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信