Laser Processing of Ti Contacts for Ohmic Behavior on P-Type 4H-SiC

IF 4.7 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Roberto Vabres, , , Gabriele Bellocchi, , , Corrado Bongiorno, , , Marilena Vivona, , , Fabrizio Roccaforte, , , Paolo Badalà, , , Paola Mancuso, , , Valeria Puglisi, , , Simone Rascunà, , and , Isodiana Crupi*, 
{"title":"Laser Processing of Ti Contacts for Ohmic Behavior on P-Type 4H-SiC","authors":"Roberto Vabres,&nbsp;, ,&nbsp;Gabriele Bellocchi,&nbsp;, ,&nbsp;Corrado Bongiorno,&nbsp;, ,&nbsp;Marilena Vivona,&nbsp;, ,&nbsp;Fabrizio Roccaforte,&nbsp;, ,&nbsp;Paolo Badalà,&nbsp;, ,&nbsp;Paola Mancuso,&nbsp;, ,&nbsp;Valeria Puglisi,&nbsp;, ,&nbsp;Simone Rascunà,&nbsp;, and ,&nbsp;Isodiana Crupi*,&nbsp;","doi":"10.1021/acsaelm.5c01338","DOIUrl":null,"url":null,"abstract":"<p >This work explores a key challenge in power device fabrication: the formation of ohmic contacts on p-type 4H-silicon carbide (SiC). We demonstrate a selective, low thermal budget approach using single titanium (Ti) metallization combined with pulsed laser annealing (PLA), as an alternative to both metallic multilayer stacks and conventional high-temperature annealing. By applying PLA with fluences above 3.6 J/cm<sup>2</sup>, Ti contacts exhibit linear current–voltage (<i>I</i>–<i>V</i>) behavior, indicating effective ohmic contact formation, with over 50% improvement in conduction observed at 3.8 J/cm<sup>2</sup>. Cross-sectional transmission electron microscopy (TEM) and elemental mapping reveal that higher fluences promote deeper SiC consumption, and the formation of a continuous, epitaxially regrown SiC layer, bonded to a uniform titanium carbide (TiC) layer extended deeper into the p-doped region. This structure supports efficient charge transfer and strong interfacial bonding. Furthermore, increasing fluence drives the transient liquid phase composition from Ti-rich toward a more balanced Ti–Si–C composition, promoting the formation of ternary phases enriched in Si and C that enhance interfacial stability and electrical performance. This work demonstrates that PLA offers precise control over interfacial reactions and contact microstructures, offering a scalable, selective, and thermally efficient approach for ohmic contacts on p-type 4H-SiC, advancing the development of high-performance, next-generation SiC-based power electronics.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 19","pages":"9004–9011"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsaelm.5c01338","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c01338","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This work explores a key challenge in power device fabrication: the formation of ohmic contacts on p-type 4H-silicon carbide (SiC). We demonstrate a selective, low thermal budget approach using single titanium (Ti) metallization combined with pulsed laser annealing (PLA), as an alternative to both metallic multilayer stacks and conventional high-temperature annealing. By applying PLA with fluences above 3.6 J/cm2, Ti contacts exhibit linear current–voltage (IV) behavior, indicating effective ohmic contact formation, with over 50% improvement in conduction observed at 3.8 J/cm2. Cross-sectional transmission electron microscopy (TEM) and elemental mapping reveal that higher fluences promote deeper SiC consumption, and the formation of a continuous, epitaxially regrown SiC layer, bonded to a uniform titanium carbide (TiC) layer extended deeper into the p-doped region. This structure supports efficient charge transfer and strong interfacial bonding. Furthermore, increasing fluence drives the transient liquid phase composition from Ti-rich toward a more balanced Ti–Si–C composition, promoting the formation of ternary phases enriched in Si and C that enhance interfacial stability and electrical performance. This work demonstrates that PLA offers precise control over interfacial reactions and contact microstructures, offering a scalable, selective, and thermally efficient approach for ohmic contacts on p-type 4H-SiC, advancing the development of high-performance, next-generation SiC-based power electronics.

p型4H-SiC表面Ti触点欧姆行为的激光加工
这项工作探讨了功率器件制造中的一个关键挑战:在p型4h碳化硅(SiC)上形成欧姆触点。我们展示了一种选择性的、低热预算的方法,使用单钛(Ti)金属化结合脉冲激光退火(PLA),作为金属多层堆叠和传统高温退火的替代方法。通过施加影响大于3.6 J/cm2的聚乳酸,Ti触点表现出线性电流-电压(I-V)行为,表明有效的欧姆触点形成,在3.8 J/cm2下观察到超过50%的导电性改善。透射电镜(TEM)和元素图显示,较高的影响促进了更深的SiC消耗,形成了一个连续的外延再生的SiC层,与均匀的碳化钛(TiC)层结合,延伸到更深的p掺杂区域。这种结构支持高效的电荷转移和强的界面键合。此外,不断增加的通量驱动瞬态液相组成从富ti转向更平衡的Ti-Si-C组成,促进形成富Si和C的三元相,从而增强界面稳定性和电学性能。这项工作表明,PLA提供了对界面反应和接触微结构的精确控制,为p型4H-SiC上的欧姆接触提供了一种可扩展、选择性和热效率高的方法,推动了高性能、下一代基于sic的电力电子的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信