{"title":"Laser Processing of Ti Contacts for Ohmic Behavior on P-Type 4H-SiC","authors":"Roberto Vabres, , , Gabriele Bellocchi, , , Corrado Bongiorno, , , Marilena Vivona, , , Fabrizio Roccaforte, , , Paolo Badalà, , , Paola Mancuso, , , Valeria Puglisi, , , Simone Rascunà, , and , Isodiana Crupi*, ","doi":"10.1021/acsaelm.5c01338","DOIUrl":null,"url":null,"abstract":"<p >This work explores a key challenge in power device fabrication: the formation of ohmic contacts on p-type 4H-silicon carbide (SiC). We demonstrate a selective, low thermal budget approach using single titanium (Ti) metallization combined with pulsed laser annealing (PLA), as an alternative to both metallic multilayer stacks and conventional high-temperature annealing. By applying PLA with fluences above 3.6 J/cm<sup>2</sup>, Ti contacts exhibit linear current–voltage (<i>I</i>–<i>V</i>) behavior, indicating effective ohmic contact formation, with over 50% improvement in conduction observed at 3.8 J/cm<sup>2</sup>. Cross-sectional transmission electron microscopy (TEM) and elemental mapping reveal that higher fluences promote deeper SiC consumption, and the formation of a continuous, epitaxially regrown SiC layer, bonded to a uniform titanium carbide (TiC) layer extended deeper into the p-doped region. This structure supports efficient charge transfer and strong interfacial bonding. Furthermore, increasing fluence drives the transient liquid phase composition from Ti-rich toward a more balanced Ti–Si–C composition, promoting the formation of ternary phases enriched in Si and C that enhance interfacial stability and electrical performance. This work demonstrates that PLA offers precise control over interfacial reactions and contact microstructures, offering a scalable, selective, and thermally efficient approach for ohmic contacts on p-type 4H-SiC, advancing the development of high-performance, next-generation SiC-based power electronics.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 19","pages":"9004–9011"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsaelm.5c01338","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c01338","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This work explores a key challenge in power device fabrication: the formation of ohmic contacts on p-type 4H-silicon carbide (SiC). We demonstrate a selective, low thermal budget approach using single titanium (Ti) metallization combined with pulsed laser annealing (PLA), as an alternative to both metallic multilayer stacks and conventional high-temperature annealing. By applying PLA with fluences above 3.6 J/cm2, Ti contacts exhibit linear current–voltage (I–V) behavior, indicating effective ohmic contact formation, with over 50% improvement in conduction observed at 3.8 J/cm2. Cross-sectional transmission electron microscopy (TEM) and elemental mapping reveal that higher fluences promote deeper SiC consumption, and the formation of a continuous, epitaxially regrown SiC layer, bonded to a uniform titanium carbide (TiC) layer extended deeper into the p-doped region. This structure supports efficient charge transfer and strong interfacial bonding. Furthermore, increasing fluence drives the transient liquid phase composition from Ti-rich toward a more balanced Ti–Si–C composition, promoting the formation of ternary phases enriched in Si and C that enhance interfacial stability and electrical performance. This work demonstrates that PLA offers precise control over interfacial reactions and contact microstructures, offering a scalable, selective, and thermally efficient approach for ohmic contacts on p-type 4H-SiC, advancing the development of high-performance, next-generation SiC-based power electronics.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico