Nikunj Sangwan, , , Eric Jutzi, , , Christian Olsen, , , Sarah Vogel, , , Arianna Nigro, , , Ilaria Zardo, , and , Andrea Hofmann*,
{"title":"Impact of Surface Treatments on the Transport Properties of Germanium 2DHGs","authors":"Nikunj Sangwan, , , Eric Jutzi, , , Christian Olsen, , , Sarah Vogel, , , Arianna Nigro, , , Ilaria Zardo, , and , Andrea Hofmann*, ","doi":"10.1021/acsaelm.5c01069","DOIUrl":null,"url":null,"abstract":"<p >Holes in planar germanium (Ge) heterostructures show promise for quantum applications, particularly in superconducting and spin qubits, due to strong spin–orbit interaction, low effective mass, and the absence of valley degeneracies. However, charge traps cause issues such as gate hysteresis and charge noise. This study examines the effect of surface treatments on the accumulation behavior and transport properties of Ge-based two-dimensional hole gases (2DHGs). Oxygen plasma treatment reduces conduction in a setting without applied top gate voltage, improves the mobility, and lowers the percolation density, while hydrofluoric acid (HF) etching provides no benefit. The results suggest that interface traps from the partially oxidized silicon (Si) cap pin the Fermi level and that oxygen plasma reduces the trap density by fully oxidizing the Si cap. Therefore, optimizing surface treatments is crucial for minimizing the charge traps and thereby enhancing the device’s performance.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 19","pages":"8844–8849"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acsaelm.5c01069","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaelm.5c01069","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Holes in planar germanium (Ge) heterostructures show promise for quantum applications, particularly in superconducting and spin qubits, due to strong spin–orbit interaction, low effective mass, and the absence of valley degeneracies. However, charge traps cause issues such as gate hysteresis and charge noise. This study examines the effect of surface treatments on the accumulation behavior and transport properties of Ge-based two-dimensional hole gases (2DHGs). Oxygen plasma treatment reduces conduction in a setting without applied top gate voltage, improves the mobility, and lowers the percolation density, while hydrofluoric acid (HF) etching provides no benefit. The results suggest that interface traps from the partially oxidized silicon (Si) cap pin the Fermi level and that oxygen plasma reduces the trap density by fully oxidizing the Si cap. Therefore, optimizing surface treatments is crucial for minimizing the charge traps and thereby enhancing the device’s performance.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico