Interfacial Coordination Engineering of Phthalocyanine‐Based cMOF/LDH Heterostructures for Superior Capacitive Deionization

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chang He, Jun Zhang, Ruifeng Song, Dionissios Mantzavinos, Alexandros Katsaounis, Rengui Weng, Xusheng Wang, Zhang Yan, Yang Qu, Wei Lu, Zhuwu Jiang
{"title":"Interfacial Coordination Engineering of Phthalocyanine‐Based cMOF/LDH Heterostructures for Superior Capacitive Deionization","authors":"Chang He, Jun Zhang, Ruifeng Song, Dionissios Mantzavinos, Alexandros Katsaounis, Rengui Weng, Xusheng Wang, Zhang Yan, Yang Qu, Wei Lu, Zhuwu Jiang","doi":"10.1002/adfm.202522607","DOIUrl":null,"url":null,"abstract":"Capacitive deionization (CDI) faces critical challenges, primarily due to conventional electrodes suffering from limited adsorption capacity, sluggish kinetics, and poor cycling stability. To simultaneously overcome these issues, this study introduces a novel coordination stabilized CoPc‐NiO<jats:sub>4</jats:sub>/LDH composite electrode, designed through a combined experimental and theoretical approach. Specifically, the strong coordination interaction between the conductive metal–organic framework CoPc‐NiO<jats:sub>4</jats:sub> and NiCo‐LDH creates a stable interfacial coordination structure, which dramatically shortens the ion diffusion path and accelerates charge transfer via robust Ni─O─C coordination bonds. As a result, the novel structural configuration greatly enhances the stability of the electrode and facilitates faster ion removal kinetics. It delivers an impressive adsorption capacity of 134.7 mg g<jats:sup>−1</jats:sup>, the average desalination rate of 15.3 mg g<jats:sup>−1</jats:sup> min<jats:sup>−1</jats:sup>, a notable charge efficiency of 92%, and maintains excellent cycling durability, retaining 94.7% of its capacity after 100 operational cycles. Density functional theory (DFT) calculations substantiate the experimental findings by demonstrating atomic‐level electron redistribution at the interface, clarifying the strong binding energy (‐1.85 eV) of Ni─O─C bonds, which effectively suppresses structural distortions. Overall, this work reveals the critical role of interfacial coordination chemistry in regulating charge storage and structural durability, guiding the rational design of high‐performance CDI materials.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"137 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202522607","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Capacitive deionization (CDI) faces critical challenges, primarily due to conventional electrodes suffering from limited adsorption capacity, sluggish kinetics, and poor cycling stability. To simultaneously overcome these issues, this study introduces a novel coordination stabilized CoPc‐NiO4/LDH composite electrode, designed through a combined experimental and theoretical approach. Specifically, the strong coordination interaction between the conductive metal–organic framework CoPc‐NiO4 and NiCo‐LDH creates a stable interfacial coordination structure, which dramatically shortens the ion diffusion path and accelerates charge transfer via robust Ni─O─C coordination bonds. As a result, the novel structural configuration greatly enhances the stability of the electrode and facilitates faster ion removal kinetics. It delivers an impressive adsorption capacity of 134.7 mg g−1, the average desalination rate of 15.3 mg g−1 min−1, a notable charge efficiency of 92%, and maintains excellent cycling durability, retaining 94.7% of its capacity after 100 operational cycles. Density functional theory (DFT) calculations substantiate the experimental findings by demonstrating atomic‐level electron redistribution at the interface, clarifying the strong binding energy (‐1.85 eV) of Ni─O─C bonds, which effectively suppresses structural distortions. Overall, this work reveals the critical role of interfacial coordination chemistry in regulating charge storage and structural durability, guiding the rational design of high‐performance CDI materials.
酞菁基cMOF/LDH异质结构的界面配位工程
电容去离子(CDI)面临着严峻的挑战,主要是由于传统电极的吸附容量有限,动力学缓慢,循环稳定性差。为了同时克服这些问题,本研究通过实验和理论相结合的方法设计了一种新型的配位稳定CoPc - NiO4/LDH复合电极。具体而言,导电金属-有机骨架CoPc - NiO4和NiCo - LDH之间的强配位相互作用创造了稳定的界面配位结构,大大缩短了离子扩散路径,并通过稳健的Ni─O─C配位键加速了电荷转移。因此,新的结构配置大大提高了电极的稳定性,促进了更快的离子去除动力学。它提供了令人印象深刻的吸附量134.7 mg g−1,平均脱盐率15.3 mg g−1 min−1,92%的显着充电效率,并保持良好的循环耐久性,在100次运行循环后保持94.7%的容量。密度泛函理论(DFT)计算证实了实验结果,证明了界面上原子水平的电子重分布,阐明了Ni─O─C键的强结合能(‐1.85 eV),有效地抑制了结构畸变。总的来说,这项工作揭示了界面配位化学在调节电荷储存和结构耐久性方面的关键作用,指导了高性能CDI材料的合理设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信