Neural Networks as Surrogate Solvers for Time-dependent Accretion Disk Dynamics

Shunyuan Mao, Weiqi Wang, Sifan Wang, Ruobing Dong, Lu Lu, Kwang Moo Yi, Paris Perdikaris, Andrea Isella, Sébastien Fabbro and Lile Wang
{"title":"Neural Networks as Surrogate Solvers for Time-dependent Accretion Disk Dynamics","authors":"Shunyuan Mao, Weiqi Wang, Sifan Wang, Ruobing Dong, Lu Lu, Kwang Moo Yi, Paris Perdikaris, Andrea Isella, Sébastien Fabbro and Lile Wang","doi":"10.3847/2041-8213/ae0b60","DOIUrl":null,"url":null,"abstract":"Accretion disks are ubiquitous in astrophysics, appearing in diverse environments from planet-forming systems to X-ray binaries and active galactic nuclei. Traditionally, modeling their dynamics requires computationally intensive (magneto)hydrodynamic simulations. Recently, physics-informed neural networks (PINNs) have emerged as a promising alternative. This approach trains neural networks directly on physical laws without requiring data. We for the first time demonstrate PINNs for solving the two-dimensional, time-dependent hydrodynamics of non-self-gravitating accretion disks. Our models provide solutions at arbitrary times and locations within the training domain, and successfully reproduce key physical phenomena, including the excitation and propagation of spiral density waves and gap formation from disk–companion interactions. Notably, the boundary-free approach enabled by PINNs naturally eliminates the spurious wave reflections at disk edges, which are challenging to suppress in numerical simulations. These results highlight how advanced machine learning techniques can enable physics-driven, data-free modeling of complex astrophysical systems, potentially offering an alternative to traditional numerical simulations in the future.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ae0b60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accretion disks are ubiquitous in astrophysics, appearing in diverse environments from planet-forming systems to X-ray binaries and active galactic nuclei. Traditionally, modeling their dynamics requires computationally intensive (magneto)hydrodynamic simulations. Recently, physics-informed neural networks (PINNs) have emerged as a promising alternative. This approach trains neural networks directly on physical laws without requiring data. We for the first time demonstrate PINNs for solving the two-dimensional, time-dependent hydrodynamics of non-self-gravitating accretion disks. Our models provide solutions at arbitrary times and locations within the training domain, and successfully reproduce key physical phenomena, including the excitation and propagation of spiral density waves and gap formation from disk–companion interactions. Notably, the boundary-free approach enabled by PINNs naturally eliminates the spurious wave reflections at disk edges, which are challenging to suppress in numerical simulations. These results highlight how advanced machine learning techniques can enable physics-driven, data-free modeling of complex astrophysical systems, potentially offering an alternative to traditional numerical simulations in the future.
神经网络作为时间相关吸积盘动力学的替代求解器
吸积盘在天体物理学中无处不在,出现在从行星形成系统到x射线双星和活动星系核的各种环境中。传统上,它们的动力学建模需要计算密集的(磁)流体动力学模拟。最近,物理信息神经网络(pinn)作为一种很有前途的替代方案出现了。这种方法直接根据物理定律训练神经网络,而不需要数据。我们首次证明了pinn用于求解非自引力吸积盘的二维、随时间变化的流体动力学。我们的模型提供了训练域内任意时间和位置的解决方案,并成功地再现了关键的物理现象,包括螺旋密度波的激发和传播以及盘伴相互作用产生的间隙形成。值得注意的是,pinn实现的无边界方法自然地消除了磁盘边缘的杂散波反射,这在数值模拟中是难以抑制的。这些结果突出了先进的机器学习技术如何能够实现物理驱动的、无数据的复杂天体物理系统建模,并有可能在未来提供传统数值模拟的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信