Synergistic Regulation of Li-Ion Transport and Crystallographic Orientation via Lanthanum Iodide for High-Performance Lithium Metal Anodes

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-10-12 DOI:10.1021/acsnano.5c13324
Yuanyuan Wang, , , Ziqing Yao, , , Man Pang, , , Zhongwei Jiang, , , Tao Pan, , , Chunman Zheng, , , Shuangke Liu*, , , Yujie Li*, , and , Weiwei Sun*, 
{"title":"Synergistic Regulation of Li-Ion Transport and Crystallographic Orientation via Lanthanum Iodide for High-Performance Lithium Metal Anodes","authors":"Yuanyuan Wang,&nbsp;, ,&nbsp;Ziqing Yao,&nbsp;, ,&nbsp;Man Pang,&nbsp;, ,&nbsp;Zhongwei Jiang,&nbsp;, ,&nbsp;Tao Pan,&nbsp;, ,&nbsp;Chunman Zheng,&nbsp;, ,&nbsp;Shuangke Liu*,&nbsp;, ,&nbsp;Yujie Li*,&nbsp;, and ,&nbsp;Weiwei Sun*,&nbsp;","doi":"10.1021/acsnano.5c13324","DOIUrl":null,"url":null,"abstract":"<p >Research on lithium metal anodes confronts critical challenges from uncontrolled dendrite growth and unstable SEIs, especially under high-energy conditions. Here, we report a surface engineering strategy utilizing lanthanum triiodide (LaI<sub>3</sub>) to regulate Li-ion transport dynamics and lithium crystal growth kinetics. LaI<sub>3</sub> reacts with Li to form metallic La and LiI, creating a surface modification layer in inorganic components, which enhances interfacial stability and enables stable cycling of the Li anode. Further experiments and calculations show that the La/LiI-rich inorganic SEI layer regulates Li deposition orientation and improves interfacial transport kinetics. Specifically, La doping elevates the <i>s</i>-band center of the Li (200) facet, minimizing the <i>s</i>-band center energy difference and promoting the preferred orientation and planar growth of Li deposition. Meanwhile, LiI-rich SEI exhibits an ultralow Li<sup>+</sup> migration barrier (0.035 eV) and superior Li<sup>+</sup> adsorption, enabling rapid ion transport and uniform deposition. The synergistic effects are manifested in practical 5.93 Ah Li||NCM90 pouch cells, achieving a high energy density of 500.93 Wh kg<sup>–1</sup> and maintaining 86.8% capacity retention after 50 cycles with an average Coulombic efficiency of 99.47%. This work presents a scalable approach for high-energy lithium metal batteries by combining simultaneous crystallographic orientation control and SEI engineering through interfacial chemistry manipulation.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 41","pages":"36771–36783"},"PeriodicalIF":16.0000,"publicationDate":"2025-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c13324","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Research on lithium metal anodes confronts critical challenges from uncontrolled dendrite growth and unstable SEIs, especially under high-energy conditions. Here, we report a surface engineering strategy utilizing lanthanum triiodide (LaI3) to regulate Li-ion transport dynamics and lithium crystal growth kinetics. LaI3 reacts with Li to form metallic La and LiI, creating a surface modification layer in inorganic components, which enhances interfacial stability and enables stable cycling of the Li anode. Further experiments and calculations show that the La/LiI-rich inorganic SEI layer regulates Li deposition orientation and improves interfacial transport kinetics. Specifically, La doping elevates the s-band center of the Li (200) facet, minimizing the s-band center energy difference and promoting the preferred orientation and planar growth of Li deposition. Meanwhile, LiI-rich SEI exhibits an ultralow Li+ migration barrier (0.035 eV) and superior Li+ adsorption, enabling rapid ion transport and uniform deposition. The synergistic effects are manifested in practical 5.93 Ah Li||NCM90 pouch cells, achieving a high energy density of 500.93 Wh kg–1 and maintaining 86.8% capacity retention after 50 cycles with an average Coulombic efficiency of 99.47%. This work presents a scalable approach for high-energy lithium metal batteries by combining simultaneous crystallographic orientation control and SEI engineering through interfacial chemistry manipulation.

Abstract Image

高性能金属锂阳极中碘化镧对锂离子输运和晶体取向的协同调节。
锂金属阳极的研究面临着不受控制的枝晶生长和不稳定的sei的严峻挑战,特别是在高能条件下。在这里,我们报告了一种利用三碘化镧(LaI3)来调节锂离子传输动力学和锂晶体生长动力学的表面工程策略。LaI3与Li反应形成金属La和LiI,在无机组分中形成表面修饰层,增强了界面稳定性,使Li阳极能够稳定循环。进一步的实验和计算表明,富La/ lii无机SEI层调节了Li沉积取向,改善了界面输运动力学。具体来说,La掺杂提高了Li(200)面s带中心,减小了s带中心能量差,促进了Li沉积的择优取向和平面生长。同时,富Li SEI具有极低的Li+迁移势垒(0.035 eV)和优异的Li+吸附性能,能够实现离子快速迁移和均匀沉积。在实际的5.93 Ah Li||NCM90袋状电池中表现出协同效应,实现了500.93 Wh kg-1的高能量密度,在50次循环后保持86.8%的容量保持,平均库仑效率为99.47%。这项工作提出了一种可扩展的高能锂金属电池方法,通过界面化学操作将晶体取向控制和SEI工程相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信