George Bepete,Gothamie Ratnayake,David Emanuel Sanchez,Zhuohang Yu,Edgar Dimitrov,Andres Fest Carreno,Maykol Christian Damasceno Oliveira,Bartolomeu Cruz Viana,Francisco Eroni Paz Santos,Mauricio Terrones
{"title":"Scalable Synthesis of High-Quality Graphene Quantum Dots by Reductive Intercalation/Exfoliation of Coal.","authors":"George Bepete,Gothamie Ratnayake,David Emanuel Sanchez,Zhuohang Yu,Edgar Dimitrov,Andres Fest Carreno,Maykol Christian Damasceno Oliveira,Bartolomeu Cruz Viana,Francisco Eroni Paz Santos,Mauricio Terrones","doi":"10.1021/acsnano.5c10602","DOIUrl":null,"url":null,"abstract":"Coal, historically a low-cost and abundant energy resource, is emerging as a promising carbon-rich precursor for advanced nanomaterials. In this work, we introduce a reductive intercalation strategy to synthesize reduced (electron-rich) graphene quantum dots (GQDs) directly from anthracite coal. Potassium intercalation transforms the rigid graphenic framework of anthracite coal into a stage-I polyelectrolyte salt that spontaneously dissolves in N-methyl-2-pyrrolidone (NMP), yielding uniform (2.5-3.5 nm), reduced GQDs without the need for sonication or oxidative processing. The method achieves an isolated yield of <28% based on the starting mass of anthracite coal. Practically, this means that 3.6 kg of coal can yield up to 1 kg of graphene quantum dots, highlighting the scalability and efficiency of this approach. The resulting GQDs exhibit a direct bandgap of 3.4 eV and strong excitation-dependent photoluminescence. Thermo-optical characterization of GQDs in NMP reveals a thermal diffusivity of (6.4 ± 0.3) × 10-8 m2/s and a nonlinear refractive index of -4.69 × 10-9 cm2/W, demonstrating their potential for photothermal conversion and nonlinear optical applications. Notably, the GQDs can be precipitated and collected as slurries or powders that are readily dispersible in a variety of other solvents, including water, ethanol, isopropanol, facilitating their integration into diverse solution-processable systems. This scalable, oxidation-free approach positions coal as a viable feedstock for high-performance quantum nanomaterials with potential applications in sustainable sensing, and thermal management technologies.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"39 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c10602","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Coal, historically a low-cost and abundant energy resource, is emerging as a promising carbon-rich precursor for advanced nanomaterials. In this work, we introduce a reductive intercalation strategy to synthesize reduced (electron-rich) graphene quantum dots (GQDs) directly from anthracite coal. Potassium intercalation transforms the rigid graphenic framework of anthracite coal into a stage-I polyelectrolyte salt that spontaneously dissolves in N-methyl-2-pyrrolidone (NMP), yielding uniform (2.5-3.5 nm), reduced GQDs without the need for sonication or oxidative processing. The method achieves an isolated yield of <28% based on the starting mass of anthracite coal. Practically, this means that 3.6 kg of coal can yield up to 1 kg of graphene quantum dots, highlighting the scalability and efficiency of this approach. The resulting GQDs exhibit a direct bandgap of 3.4 eV and strong excitation-dependent photoluminescence. Thermo-optical characterization of GQDs in NMP reveals a thermal diffusivity of (6.4 ± 0.3) × 10-8 m2/s and a nonlinear refractive index of -4.69 × 10-9 cm2/W, demonstrating their potential for photothermal conversion and nonlinear optical applications. Notably, the GQDs can be precipitated and collected as slurries or powders that are readily dispersible in a variety of other solvents, including water, ethanol, isopropanol, facilitating their integration into diverse solution-processable systems. This scalable, oxidation-free approach positions coal as a viable feedstock for high-performance quantum nanomaterials with potential applications in sustainable sensing, and thermal management technologies.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.