The sealing effect and degradation of polydioxanone weaving tracheal stents in a canine airway defect model.

Haihua Huang, Yi Hu, Peize Meng, Xinyue Yang, Yanxue Ma, Yongxin Zhou, Zheng Ruan
{"title":"The sealing effect and degradation of polydioxanone weaving tracheal stents in a canine airway defect model.","authors":"Haihua Huang, Yi Hu, Peize Meng, Xinyue Yang, Yanxue Ma, Yongxin Zhou, Zheng Ruan","doi":"10.1088/1748-605X/ae11e5","DOIUrl":null,"url":null,"abstract":"<p><p>The use of covered self-expandable metal (CSEM) stents for fistulas sealing is a common clinical approach. However, these stents need to be removed once their therapeutic goals are achieved. Our study designed and fabricated a dumbbell-shaped, high-porosity, biodegradable polydioxanone weaving tracheal (PW) stent, and investigated its sealing efficacy and degradation characteristics. A tracheal defect model was created in 24 beagle dogs. Six dogs were implanted with CSEM stents, while the remaining 18 dogs received PW stents. The dogs in the CSEM and PW groups were observed for up to 8 and 14 weeks, respectively, with clinical symptoms, tracheoscopy, computed tomography scans, and fluoroscopy monitored. Subsequently, the stents were retrieved to observe morphological changes, and measure mechanical properties. The PW stents exhibited excellent airtightness, with significantly fewer complications such as stent displacement and granulation tissue hyperplasia compared to the CSEM stents. The tracheal tissue response to the PW stent was relatively mild. After PW stent implantation, collagen fiber deposition at the defect site gradually increased, and cartilage structure regeneration was observed in later stages. Notably, cilia were largely absent in the tracheal epithelium, with squamous metaplasia observed even in the later stages of the experiment following PW stent implantation. Additionally, the PW stents remained mostly intact in the canine airways until week 12, and were completely degraded and disappeared from the canine airways at week 14, without causing severe complications. The PW stent, featuring excellent biocompatibility and uniform degradation in the large-animal airway, demonstrated clinical effectiveness in sealing tracheal defects.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ae11e5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of covered self-expandable metal (CSEM) stents for fistulas sealing is a common clinical approach. However, these stents need to be removed once their therapeutic goals are achieved. Our study designed and fabricated a dumbbell-shaped, high-porosity, biodegradable polydioxanone weaving tracheal (PW) stent, and investigated its sealing efficacy and degradation characteristics. A tracheal defect model was created in 24 beagle dogs. Six dogs were implanted with CSEM stents, while the remaining 18 dogs received PW stents. The dogs in the CSEM and PW groups were observed for up to 8 and 14 weeks, respectively, with clinical symptoms, tracheoscopy, computed tomography scans, and fluoroscopy monitored. Subsequently, the stents were retrieved to observe morphological changes, and measure mechanical properties. The PW stents exhibited excellent airtightness, with significantly fewer complications such as stent displacement and granulation tissue hyperplasia compared to the CSEM stents. The tracheal tissue response to the PW stent was relatively mild. After PW stent implantation, collagen fiber deposition at the defect site gradually increased, and cartilage structure regeneration was observed in later stages. Notably, cilia were largely absent in the tracheal epithelium, with squamous metaplasia observed even in the later stages of the experiment following PW stent implantation. Additionally, the PW stents remained mostly intact in the canine airways until week 12, and were completely degraded and disappeared from the canine airways at week 14, without causing severe complications. The PW stent, featuring excellent biocompatibility and uniform degradation in the large-animal airway, demonstrated clinical effectiveness in sealing tracheal defects.

聚二恶酮编织气管支架在犬气道缺损模型中的密封效果及降解。
背景:使用有盖自膨胀金属(CSEM)支架进行瘘管密封是一种常见的临床方法。然而,一旦达到治疗目的,这些支架就需要移除。本研究设计制作了一种哑铃形、高孔隙度、可生物降解的聚二氧环酮编织气管(PW)支架,并对其密封效果和降解特性进行了研究。方法:采用24只beagle犬建立气管缺损模型。6只狗植入CSEM支架,其余18只狗植入PW支架。CSEM组和PW组分别观察8周和14周,观察临床症状、气管镜、CT扫描和透视。随后取出支架,观察支架形态变化,测量支架力学性能。结果:与CSEM支架相比,PW支架具有良好的气密性,支架移位、肉芽组织增生等并发症明显减少。气管组织对PW支架的反应相对较轻。PW支架植入后,缺损部位胶原纤维沉积逐渐增多,后期观察到软骨结构再生。值得注意的是,气管上皮中大部分没有纤毛,甚至在PW支架植入后的实验后期也观察到鳞状化生。此外,直到第12周,PW支架在犬气道中基本保持完整,并在第14周完全降解并从犬气道中消失,未引起严重并发症。结论:PW支架具有良好的生物相容性和在大型动物气道内降解均匀性,具有封堵气管缺损的临床效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信