Maize Chlorotic Leaf Spot1 encodes a fumarylacetoacetate hydrolase essential for carbohydrate partitioning.

IF 7.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ruchang Ren, Sihang Zhao, Hong Jia, Hao Li, Lishuan Wu, Jinge Tian, Yifan Zhu, Junxiang Tang, Xiangyang Guo, Chenglong Wang, Feng Tian
{"title":"Maize Chlorotic Leaf Spot1 encodes a fumarylacetoacetate hydrolase essential for carbohydrate partitioning.","authors":"Ruchang Ren, Sihang Zhao, Hong Jia, Hao Li, Lishuan Wu, Jinge Tian, Yifan Zhu, Junxiang Tang, Xiangyang Guo, Chenglong Wang, Feng Tian","doi":"10.1016/j.jgg.2025.10.002","DOIUrl":null,"url":null,"abstract":"<p><p>Carbohydrate partitioning from photosynthetic sources to non-photosynthetic sinks is essential for plant development and crop yield. Using a maize-teosinte BC<sub>2</sub>S<sub>3</sub> population, we identify Chlorotic Leaf Spot1 (CLS1), a fumarylacetoacetate hydrolase (FAH) in the tyrosine degradation pathway that plays an essential role in carbohydrate partitioning in maize. CLS1 localizes to the plasma membrane, cytoplasm, and nucleus. Allelic tests and sequence analysis reveal that the teosinte parent CIMMYT8759 carries a weak allele of CLS1, likely due to rare amino acid substitutions at residues 175 and 355. Loss-of-function mutants of CLS1 develop chlorotic leaf spots accompanied by carbohydrate hyperaccumulation, reduced photosynthetic efficiency, chloroplast damage, and impaired transient starch conversion. Critically, cls1 mutants exhibit ectopic callose accumulation and aberrant plasmodesmata ultrastructure at the mesophyll-bundle sheath and bundle sheath-vascular parenchyma interfaces. This defect causes starch granule and soluble sugar accumulation in chlorotic leaf tissues, indicating a disruption of the symplastic transport pathway. Collectively, our results uncover an important role for FAH in plant development and identify CLS1 as a key regulator of symplastic carbohydrate partitioning.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2025.10.002","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbohydrate partitioning from photosynthetic sources to non-photosynthetic sinks is essential for plant development and crop yield. Using a maize-teosinte BC2S3 population, we identify Chlorotic Leaf Spot1 (CLS1), a fumarylacetoacetate hydrolase (FAH) in the tyrosine degradation pathway that plays an essential role in carbohydrate partitioning in maize. CLS1 localizes to the plasma membrane, cytoplasm, and nucleus. Allelic tests and sequence analysis reveal that the teosinte parent CIMMYT8759 carries a weak allele of CLS1, likely due to rare amino acid substitutions at residues 175 and 355. Loss-of-function mutants of CLS1 develop chlorotic leaf spots accompanied by carbohydrate hyperaccumulation, reduced photosynthetic efficiency, chloroplast damage, and impaired transient starch conversion. Critically, cls1 mutants exhibit ectopic callose accumulation and aberrant plasmodesmata ultrastructure at the mesophyll-bundle sheath and bundle sheath-vascular parenchyma interfaces. This defect causes starch granule and soluble sugar accumulation in chlorotic leaf tissues, indicating a disruption of the symplastic transport pathway. Collectively, our results uncover an important role for FAH in plant development and identify CLS1 as a key regulator of symplastic carbohydrate partitioning.

玉米褪绿叶Spot1编码碳水化合物分配所必需的富马酰乙酸水解酶。
从光合源到非光合汇的碳水化合物分配对植物发育和作物产量至关重要。利用玉米-teosinte BC2S3群体,我们鉴定了一种位于酪氨酸降解途径中的富马酰乙酸水解酶(FAH) CLS1,该酶在玉米碳水化合物分配中起重要作用。CLS1定位于质膜、细胞质和细胞核。等位基因测试和序列分析显示,大山猫亲本CIMMYT8759携带CLS1弱等位基因,可能是由于175和355残基罕见的氨基酸替换。丧失功能的CLS1突变体会产生褪绿的叶斑,并伴有碳水化合物过度积累、光合效率降低、叶绿体损伤和瞬时淀粉转化受损。关键的是,cl1突变体在叶肉-束鞘和束鞘-血管薄壁界面处表现出异位的胼胝质积累和异常的间连丝超微结构。这一缺陷导致淀粉颗粒和可溶性糖在褪绿叶组织中积累,表明共塑运输途径被破坏。总之,我们的研究结果揭示了FAH在植物发育中的重要作用,并确定CLS1是共塑碳水化合物分配的关键调节因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Genetics and Genomics
Journal of Genetics and Genomics 生物-生化与分子生物学
CiteScore
8.20
自引率
3.40%
发文量
4756
审稿时长
14 days
期刊介绍: The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信