{"title":"Laminin-511-functionalized fibrin gel enables in-gel proliferation of human induced pluripotent stem cells.","authors":"Yukimasa Taniguchi, Mamoru Takizawa, Ayaka Hada, Ayano Ishimaru, Kiyotoshi Sekiguchi","doi":"10.1016/j.matbio.2025.10.003","DOIUrl":null,"url":null,"abstract":"<p><p>Fibrin is a biocompatible hydrogel that is widely used as a surgical sealant and as a scaffold for in vitro cell culture. Here, we engineered a heterotrimeric chimera between fibrinogen and laminin-511 by connecting the N-terminal self-polymerization domain of fibrinogen with the C-terminal integrin-binding domain of laminin-511 via their coiled-coil regions. The resulting chimeric protein, designated Chimera-511, binds to fibrinogen in a thrombin-dependent manner and exerts integrin-binding activity in a fibrin(ogen)-bound form. Chimera-511 co-polymerizes with fibrinogen to form a fibrin gel endowed with the potent integrin-binding activity of laminin-511, thereby enabling robust three-dimensional proliferation of human induced pluripotent stem cells while maintaining their pluripotency marker expression and trilineage differentiation potential. This functionalized, biodegradable fibrin gel provides a defined and clinically compatible three-dimensional scaffold for stem cell culture, with potential applications in both basic research and regenerative medicine.</p>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.matbio.2025.10.003","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fibrin is a biocompatible hydrogel that is widely used as a surgical sealant and as a scaffold for in vitro cell culture. Here, we engineered a heterotrimeric chimera between fibrinogen and laminin-511 by connecting the N-terminal self-polymerization domain of fibrinogen with the C-terminal integrin-binding domain of laminin-511 via their coiled-coil regions. The resulting chimeric protein, designated Chimera-511, binds to fibrinogen in a thrombin-dependent manner and exerts integrin-binding activity in a fibrin(ogen)-bound form. Chimera-511 co-polymerizes with fibrinogen to form a fibrin gel endowed with the potent integrin-binding activity of laminin-511, thereby enabling robust three-dimensional proliferation of human induced pluripotent stem cells while maintaining their pluripotency marker expression and trilineage differentiation potential. This functionalized, biodegradable fibrin gel provides a defined and clinically compatible three-dimensional scaffold for stem cell culture, with potential applications in both basic research and regenerative medicine.
期刊介绍:
Matrix Biology (established in 1980 as Collagen and Related Research) is a cutting-edge journal that is devoted to publishing the latest results in matrix biology research. We welcome articles that reside at the nexus of understanding the cellular and molecular pathophysiology of the extracellular matrix. Matrix Biology focusses on solving elusive questions, opening new avenues of thought and discovery, and challenging longstanding biological paradigms.