Interactive learning system neural network algorithm optimization.

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Hao Cao, Xingman Yu, Pingping Han, Jun Peng, Deming Li
{"title":"Interactive learning system neural network algorithm optimization.","authors":"Hao Cao, Xingman Yu, Pingping Han, Jun Peng, Deming Li","doi":"10.1038/s41598-025-19436-2","DOIUrl":null,"url":null,"abstract":"<p><p>With the development of artificial intelligence education, the human-computer interaction and human-human interaction in virtual learning communities such as Zhihu and Quora have become research hotspots. This study has optimized the research dimensions of the virtual learning system in colleges and universities based on neural network algorithms and the value of digital intelligence in the humanities. This study aims to improve the efficiency and interactive quality of students' online learning by optimizing the interactive system of virtual learning communities in colleges. Constructed an algorithmic model for a long short-term memory (LSTM) network based on the concept of digital humanities integration. The model uses attention mechanism to improve its ability to comprehend and process question-and-answer (Q&A) content. In addition, student satisfaction with its use was investigated. The Siamese LSTM model with the attention mechanism outperforms other methods when using Word2Vec for embedding and Manhattan distance as a similarity function. The performance of the Siamese LSTM model with the introduction of the attention mechanism improves by 9%. In the evaluation of duplicate question detection on the Quora dataset, our model outperformed the previously established high-performing models, achieving an accuracy of 91.6%. Students expressed greater satisfaction with the updated interactive platform. The model in this study is more suitable than other published models for processing the SemEval Task 1 dataset. Our Q&A system, which implements simple information extraction and a natural language understanding method to answer questions, is highly rated by students.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"35498"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-19436-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of artificial intelligence education, the human-computer interaction and human-human interaction in virtual learning communities such as Zhihu and Quora have become research hotspots. This study has optimized the research dimensions of the virtual learning system in colleges and universities based on neural network algorithms and the value of digital intelligence in the humanities. This study aims to improve the efficiency and interactive quality of students' online learning by optimizing the interactive system of virtual learning communities in colleges. Constructed an algorithmic model for a long short-term memory (LSTM) network based on the concept of digital humanities integration. The model uses attention mechanism to improve its ability to comprehend and process question-and-answer (Q&A) content. In addition, student satisfaction with its use was investigated. The Siamese LSTM model with the attention mechanism outperforms other methods when using Word2Vec for embedding and Manhattan distance as a similarity function. The performance of the Siamese LSTM model with the introduction of the attention mechanism improves by 9%. In the evaluation of duplicate question detection on the Quora dataset, our model outperformed the previously established high-performing models, achieving an accuracy of 91.6%. Students expressed greater satisfaction with the updated interactive platform. The model in this study is more suitable than other published models for processing the SemEval Task 1 dataset. Our Q&A system, which implements simple information extraction and a natural language understanding method to answer questions, is highly rated by students.

交互式学习系统的神经网络算法优化。
随着人工智能教育的发展,知乎、Quora等虚拟学习社区中的人机交互、人机交互成为研究热点。基于神经网络算法和数字智能在人文学科中的价值,优化了高校虚拟学习系统的研究维度。本研究旨在通过优化高校虚拟学习社区互动系统,提高学生在线学习的效率和互动质量。基于数字人文融合的概念,构建了长短期记忆网络的算法模型。该模型利用注意力机制来提高其对问答内容的理解和处理能力。此外,还调查了学生对其使用的满意度。Siamese LSTM模型在使用Word2Vec嵌入和曼哈顿距离作为相似度函数时优于其他方法。引入注意机制后,Siamese LSTM模型的性能提高了9%。在Quora数据集的重复问题检测评估中,我们的模型优于之前建立的高性能模型,达到了91.6%的准确率。学生对更新后的互动平台表示满意。本研究中的模型比其他已发表的模型更适合处理SemEval Task 1数据集。我们的问答系统实现了简单的信息提取和自然语言理解的方法来回答问题,得到了学生的高度评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信