Emma Tassi, Alessandro Pigoni, Nunzio Turtulici, Federica Colombo, Lidia Fortaner-Uyà, Anna Maria Bianchi, Francesco Benedetti, Chiara Fabbri, Benedetta Vai, Paolo Brambilla, Eleonora Maggioni
{"title":"Gene-environment-brain topology reveals clinical subtypes of depression in UK Biobank.","authors":"Emma Tassi, Alessandro Pigoni, Nunzio Turtulici, Federica Colombo, Lidia Fortaner-Uyà, Anna Maria Bianchi, Francesco Benedetti, Chiara Fabbri, Benedetta Vai, Paolo Brambilla, Eleonora Maggioni","doi":"10.1038/s41598-025-19624-0","DOIUrl":null,"url":null,"abstract":"<p><p>Major depressive disorder (MDD) is a leading cause of disability worldwide, affecting over 300 million people and posing a significant burden on healthcare systems. The heterogeneity of MDD can be attributed to diverse etiologic mechanisms. Characterizing MDD subtypes with distinct clinical manifestations could improve patient care through targeted personalized interventions. Topological Data Analysis (TDA) has emerged as a promising tool for identifying homogeneous subgroups of diverse medical conditions and key disease markers. Our study applied TDA to data from a UK Biobank MDD subcohort comprising 3052 samples, leveraging genetic, environmental, and neuroimaging data to assess their differential capability in predicting clinical outcomes in MDD. TDA graphs were built from unimodal and multimodal feature sets and quantitatively compared based on their capability to predict depression severity, physical comorbidities, and treatment response outcomes. Our findings showed a key role of the environment in determining the severity of depressive symptoms. Comorbid medical conditions of MDD were best predicted by brain imaging characteristics, while brain functional patterns resulted in the best predictors of the treatment response profiles. Our results suggest that considering genetic, environmental, and brain characteristics is essential to characterize the heterogeneity of MDD, providing avenues for the definition of robust markers of health outcomes in MDD.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"35538"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-19624-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide, affecting over 300 million people and posing a significant burden on healthcare systems. The heterogeneity of MDD can be attributed to diverse etiologic mechanisms. Characterizing MDD subtypes with distinct clinical manifestations could improve patient care through targeted personalized interventions. Topological Data Analysis (TDA) has emerged as a promising tool for identifying homogeneous subgroups of diverse medical conditions and key disease markers. Our study applied TDA to data from a UK Biobank MDD subcohort comprising 3052 samples, leveraging genetic, environmental, and neuroimaging data to assess their differential capability in predicting clinical outcomes in MDD. TDA graphs were built from unimodal and multimodal feature sets and quantitatively compared based on their capability to predict depression severity, physical comorbidities, and treatment response outcomes. Our findings showed a key role of the environment in determining the severity of depressive symptoms. Comorbid medical conditions of MDD were best predicted by brain imaging characteristics, while brain functional patterns resulted in the best predictors of the treatment response profiles. Our results suggest that considering genetic, environmental, and brain characteristics is essential to characterize the heterogeneity of MDD, providing avenues for the definition of robust markers of health outcomes in MDD.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.