UGI relocation inside Cas9 reduces Cas9 dependent off target effects in cytosine base editors.

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zehao Shi, Tian-Lin Cheng
{"title":"UGI relocation inside Cas9 reduces Cas9 dependent off target effects in cytosine base editors.","authors":"Zehao Shi, Tian-Lin Cheng","doi":"10.1038/s41598-025-19482-w","DOIUrl":null,"url":null,"abstract":"<p><p>Cytosine base editors (CBEs) achieve precise C-to-T conversions by addition of uracil DNA glycosylase inhibitor (UGI) with Cas9 nickase (nCas9) and cytidine deaminase, and the conventional fusion at the nCas9 carboxyl terminus effectively inhibits uracil excision repair to enhance editing efficiency. However, despite potent on-target activity, classical CBEs exhibit significant Cas9-dependent DNA off-target effects that necessitate optimization for future applications. Here we present a strategic UGI relocation through internal fusion within the nCas9 architecture. This spatial reorganization maintains comparable on-target editing efficiency while substantially reducing Cas9-dependent DNA off-target activity. Our findings establish an alternative engineering paradigm to develop high-fidelity CBEs, offering an improved platform for widespread genome editing applications.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"35518"},"PeriodicalIF":3.9000,"publicationDate":"2025-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-19482-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cytosine base editors (CBEs) achieve precise C-to-T conversions by addition of uracil DNA glycosylase inhibitor (UGI) with Cas9 nickase (nCas9) and cytidine deaminase, and the conventional fusion at the nCas9 carboxyl terminus effectively inhibits uracil excision repair to enhance editing efficiency. However, despite potent on-target activity, classical CBEs exhibit significant Cas9-dependent DNA off-target effects that necessitate optimization for future applications. Here we present a strategic UGI relocation through internal fusion within the nCas9 architecture. This spatial reorganization maintains comparable on-target editing efficiency while substantially reducing Cas9-dependent DNA off-target activity. Our findings establish an alternative engineering paradigm to develop high-fidelity CBEs, offering an improved platform for widespread genome editing applications.

在胞嘧啶碱基编辑器中,UGI在Cas9内的重新定位减少了Cas9依赖的脱靶效应。
胞嘧啶碱基编辑器(CBEs)通过添加尿嘧啶DNA糖基酶抑制剂(UGI)与Cas9镍酶(nCas9)和胞苷脱氨酶实现精确的c -t转换,在nCas9羧基端进行常规融合,有效抑制尿嘧啶切除修复,提高编辑效率。然而,尽管具有强大的靶标活性,经典cbe表现出显著的cas9依赖性DNA脱靶效应,这需要对未来的应用进行优化。在这里,我们通过nCas9架构的内部融合提出了一个战略性的UGI迁移。这种空间重组保持了相当的靶上编辑效率,同时大大降低了cas9依赖性DNA的脱靶活性。我们的研究结果为开发高保真cbe建立了另一种工程范例,为广泛的基因组编辑应用提供了改进的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信